519 research outputs found
Ion beam manipulation of the photorefractive properties of SBN planar waveguides
Photo refractive planar waveguides have been fabricated in cerium doped Strontium Barium Niobate (SrxBa(1-x)Nb2O6 : SBN) single crystals by ion beam implantation. The losses measured were as low as 0.1 dB /cm and 7.0 dB /cm for the TM and TE modes respectively. Subsequent two beam coupling experiments performed on the waveguides showed that, unlike BaTiO3 and KNbO3 waveguides formed by ion beam implantation, the two-beam coupling gain direction did not reverse. The response time had also been reduced by two orders of magnitude
Investigation of optical periodic poling techniques in strontium barium niobate (SBN)
Periodic Poling of nonlinear optical materials into spatially alternating domain structures, is a successful method of achieving quasi-phase-matching in materials that are not readily phase-matched via conventional birefringent techniques. Of particular interest to the optics community are ferroelectric materials such as LiNbO3 that possess large nonlinear optical coefficients. We extend the discussion here to include other materials such as SBN and BaTiO3, which show good potential for periodic poling, but produced rather than via fixed electrode arrays. Our optical periodic poling uses Cerium doped Strontium Barium Niobate (SrxBa1-xN) (x =63 or 75) in which an optical grating is generated via two beam interference. The crystal properties are modified by the alternating light and dark intensity patterns, to permit spatially selective domain re-poling to occur, under the appropriate field/intensity parameters. We have investigated this scheme, with particular importance placed on the precise mechanism responsible for optical re-poling. Specifically we find that a number of the mechanisms suggested in the literature are not applicable. We are suggesting a model based on distortion of the local crystal field by photo-ionization of the cerium dopant. The intense local field causes a distortion in the ferroelectric potential of the nearby Niobium ions. Under random excitation of ions, configurations arise which reduce the coercive field of the material. This effect lasts only for the lifetime of the excited ion. We also report on the practical design considerations effecting the optimum conditions for optical periodic poling. We have investigated the optimal wavelength, power, temperature and voltage for poling, and consider the best optical set-up for the system. We further discuss our results on using different non-destructive techniques for visualizing domain
Two-wave mixing in photorefractive SBN planar waveguides
Planar waveguides have been fabricated in SBN:61 and SBN:75 by ion-beam implantation. The implantation was carried out using 2.0MeV H+ ions with doses ranging from 2x10 for the TE mode. These losses are significantly lower than those observed for planar waveguides fabricated previously using sulphur diffusion [1]. Two beam coupling experiments were then carried out on the SBN waveguide where it was observed that the gain direction was the same as that of the bulk crystal. Previously, in both BaTiO3 [2] and KNbO3 [3] planar waveguides fabricated in the same manner, the gain direction for two beam coupling had been shown to reverse. This phenomenon may be due to the ion beam implantation process reducing the waveguide layer and subsequently changing the ratio of impurity atom oxidation states - in the case of BaTiO3, the ratio of Fe2+:Fe3+. It is thought that the predominant photoexcited charge carrier in both BaTiO3 and KNbO3 is changed from the hole to the electron whereas in SBN, the electron remains the predominant carrier even after the implantation process. Modelling of these effects has been undertaken, giving an explanation of why gain reversal should occur in certain photorefractive planar waveguides fabricated by ion-beam implantation. This paper will discuss the gain and response time of the SBN waveguide in comparison to the bulk and the theoretical predictions of the effects of ion-beam implantation on photorefractive materials
Exponential Metric Fields
The Laser Interferometer Space Antenna (LISA) mission will use advanced
technologies to achieve its science goals: the direct detection of
gravitational waves, the observation of signals from compact (small and dense)
stars as they spiral into black holes, the study of the role of massive black
holes in galaxy evolution, the search for gravitational wave emission from the
early Universe. The gravitational red-shift, the advance of the perihelion of
Mercury, deflection of light and the time delay of radar signals are the
classical tests in the first order of General Relativity (GR). However, LISA
can possibly test Einstein's theories in the second order and perhaps, it will
show some particular feature of non-linearity of gravitational interaction. In
the present work we are seeking a method to construct theoretical templates
that limit in the first order the tensorial structure of some metric fields,
thus the non-linear terms are given by exponential functions of gravitational
strength. The Newtonian limit obtained here, in the first order, is equivalent
to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
The Meta VCI Map consortium for meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping: design and multicenter pilot study
Introduction: The Meta VCI Map consortium performs meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping. Integration of data from different cohorts will increase sample sizes, to improve brain lesion coverage and support comprehensive lesion-symptom mapping studies. Methods: Cohorts with available imaging on white matter hyperintensities or infarcts and cognitive testing were invited. We performed a pilot study to test the feasibility of multicenter data processing and analysis and determine the benefits to lesion coverage. Results: Forty-seven groups have joined Meta VCI Map (stroke n = 7800 patients; memory clinic n = 4900; population-based n = 14,400). The pilot study (six ischemic stroke cohorts, n = 878) demonstrated feasibility of multicenter data integration (computed tomography/magnetic resonance imaging) and achieved marked improvement of lesion coverage. Discussion: Meta VCI Map will provide new insights into the relevance of vascular lesion location for cognitive dysfunction. After the successful pilot study, further projects are being prepared. Other investigators are welcome to join
- …