55 research outputs found

    THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing

    Get PDF
    Ultrafast demagnetization of Co/Pt heterostructures induced by a femtosecond 800-nm laser pulse launches a spin current from Co to Pt and subsequent conversion of the spin current to a charge current in the Pt layer due to the inverse spin-Hall effect. At the same time, due to the spin-dependent photogalvanic effect, a circularly polarized femtosecond laser pulse also generates a photocurrent at the Co/Pt interface. Both ultrashort photocurrent pulses are effectively detected in a contactless way by measuring the THz radiation they emit. Here we aim to understand how the properties of the Co/Pt interface affect the photocurrents in the bilayers. By varying the interfacial roughness, crystal structure, and interfacial intermixing, as well as having an explicit focus on the cases when THz emissions from these two photocurrents reveal opposite trends, we identify which interface properties play a crucial role for the photocurrents. In particular, we show that by reducing the roughness, the THz emission due to the spin-dependent photogalvanic effect reduces to zero while the strength of the THz emission from the photocurrent associated with the inverse spin-Hall effect increases by a factor of 2. On the other hand, while intermixing strongly enhances the THz emission from the inverse spin-Hall effect by a factor of 4.2, THz emission related to the spin-dependent photogalvanic effect reveals the opposite trend. These findings indicate that microstructural properties of the Co-Pt interface play a decisive role in the generation of photocurrents

    Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    Full text link
    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer

    Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold

    Full text link
    X-ray absorption spectra in a wide energy range around the 4d-4f excitation threshold of Gd were recorded by total electron yield from in-plane magnetized Gd metal films. Matching the experimental spectra to tabulated absorption data reveals unprecedented short light absorption lengths down to 3 nm. The associated real parts of the refractive index for circularly polarized light propagating parallel or antiparallel to the Gd magnetization, determined through the Kramers-Kronig transformation, correspond to a magneto-optical Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the study of magnetic structure and magnetization dynamics of lanthanide elements in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief Reports. Minor change

    Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission

    Get PDF
    We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of FeRh during the first-order phase transition, identifying a clear signature of the magnetic phase.We find that a spin polarized feature at the Fermi edge is a fingerprint of the magnetic status of the system that is independent of the long-range ferromagnetic alignment of the magnetic domains.We use this feature to follow the phase transition induced by a laser pulse in a pump-probe experiment and find that the magnetic transition occurs in less than 50 ps and reaches its maximum in 100 ps

    The Clinical Sequencing Evidence-Generating Research Consortium: Integrating Genomic Sequencing in Diverse and Medically Underserved Populations

    Get PDF
    The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings
    • …
    corecore