1,194 research outputs found

    Positive solutions of Schr\"odinger equations and fine regularity of boundary points

    Full text link
    Given a Lipschitz domain Ω\Omega in RN{\mathbb R} ^N and a nonnegative potential VV in Ω\Omega such that V(x) d(x,∂Ω)2V(x)\, d(x,\partial \Omega)^2 is bounded in Ω\Omega we study the fine regularity of boundary points with respect to the Schr\"odinger operator LV:=Δ−VL_V:= \Delta -V in Ω\Omega . Using potential theoretic methods, several conditions equivalent to the fine regularity of z∈∂Ωz \in \partial \Omega are established. The main result is a simple (explicit if Ω\Omega is smooth) necessary and sufficient condition involving the size of VV for zz to be finely regular. An essential intermediate result consists in a majorization of ∫A∣ud(.,∂Ω)∣2 dx\int_A | {\frac {u} {d(.,\partial \Omega)}} | ^2\, dx for uu positive harmonic in Ω\Omega and A⊂ΩA \subset \Omega . Conditions for almost everywhere regularity in a subset AA of ∂Ω \partial \Omega are also given as well as an extension of the main results to a notion of fine L1∣L0{\mathcal L}_1 | {\mathcal L}_0-regularity, if Lj=L−Vj{\mathcal L}_j={\mathcal L}-V_j, V0, V1V_0,\, V_1 being two potentials, with V0≀V1V_0 \leq V_1 and L{\mathcal L} a second order elliptic operator.Comment: version 1. 23 pages version 3. 28 pages. Mainly a typo in Theorem 1.1 is correcte

    Paper Session III-D - Elements of Space Flight Project: A Partnership for Space Education

    Get PDF
    A unique partnership for space education was formed to facilitate greater understanding of space technology and issues for K12 students world-wide. The Elements of Space Flight Project brought school children and teachers together with experts from government and industry, using the Internet, to create a one-of-a-kind learning experience. This four-week project involved thirty-one classes from all corners of the globe -- led by teachers who want to explore the universe with their students, and expand their horizons so they can take their place in the world of the future. 128 others were turned down due to a lack of funds and personnel to assist. Internet-monitored projects for the students included: construction of a space shuttle glider; rocket cars; and paper rockets. Students are tasked to conduct test flights, to analyze data and form conclusions concerning their work. They were also tasked to conduct research on a variety of space topics and answer challenge questions via e-mail. Each class was provided e-mail Experts from whom they could gather additional information or pose questions about their projects. Questions and results could also be posted to the general project membership for consideration and review. This model program, in its first year of existence, was made possible by the efforts of Ms Joan Berger of the Roslyn Public Schools, Roslyn, New York, the US Air Force Academy (USAFA), Air Force Space Command (AFSPC), NASA and the US Space Foundation (USSF). Results are presented from this first experience, as well as recommendations for changes to next year\u27s program

    Bottom quark electroproduction in variable flavor number schemes

    Full text link
    Two variable flavor number schemes are used to describe bottom quark production in deep inelastic electron-proton scattering. In these schemes the coefficient functions are derived from mass factorization of the heavy quark coefficient functions presented in a fixed flavor number scheme. Also one has to construct a parton density set with five light flavors (u,d,s,c,b) out of a set which only contains four light flavors (u,d,s,c). In order αs2\alpha_s^2 the two sets are discontinuous at ÎŒ=mb\mu=m_b which follows from mass factorization of the heavy quark coefficient functions when it is carried out in the MSˉ{\bar {\rm MS}}-scheme. Both variable flavor number schemes give almost identical predictions for the bottom structure functions F2,bF_{2,b} and FL,bF_{L,b}. Also they both agree well with the corresponding results based on fixed order four-flavor perturbation theory over a wide range in xx and Q2Q^2.Comment: Latex with seventeen PostScript figure

    Assessment of cassava diversity in Uganda using SSR markers

    Get PDF

    Neural signals predict information sharing across cultures

    Get PDF
    Information sharing influences which messages spread and shape beliefs, behavior, and culture. In a preregistered neuroimaging study conducted in the United States and the Netherlands, we demonstrate replicability, predictive validity, and generalizability of a brain-based prediction model of information sharing. Replicating findings in Scholz et al., Proc. Natl. Acad. Sci. U.S.A. 114, 2881–2886 (2017), self-, social-, and value-related neural signals in a group of individuals tracked the population sharing of US news articles. Preregistered brain-based prediction models trained on Scholz et al. (2017) data proved generalizable to the new data, explaining more variance in population sharing than self-report ratings alone. Neural signals (versus self-reports) more reliably predicted sharing cross-culturally, suggesting that they capture more universal psychological mechanisms underlying sharing behavior. These findings highlight key neurocognitive foundations of sharing, suggest potential target mechanisms for interventions to increase message effectiveness, and advance brain-as-predictor research

    Comparison between variable flavor number schemes for charm quark electroproduction

    Full text link
    Where appropriate, the abbreviation 'VFNS' is replaced by 'CSN' to indicate the scheme using massive heavy quark coefficient functions proposed in this paper. The text below Eq. (2.13) and between Eqs. (2.33) and (2.36) has been considerably changed.Comment: 64 pages, LaTeX, 16 Postscript figure

    The universal Glivenko-Cantelli property

    Full text link
    Let F be a separable uniformly bounded family of measurable functions on a standard measurable space, and let N_{[]}(F,\epsilon,\mu) be the smallest number of \epsilon-brackets in L^1(\mu) needed to cover F. The following are equivalent: 1. F is a universal Glivenko-Cantelli class. 2. N_{[]}(F,\epsilon,\mu)0 and every probability measure \mu. 3. F is totally bounded in L^1(\mu) for every probability measure \mu. 4. F does not contain a Boolean \sigma-independent sequence. It follows that universal Glivenko-Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.Comment: 26 page

    The bulk correlation length and the range of thermodynamic Casimir forces at Bose-Einstein condensation

    Get PDF
    The relation between the bulk correlation length and the decay length of thermodynamic Casimir forces is investigated microscopically in two three-dimensional systems undergoing Bose-Einstein condensation: the perfect Bose gas and the imperfect mean-field Bose gas. For each of these systems, both lengths diverge upon approaching the corresponding condensation point from the one-phase side, and are proportional to each other. We determine the proportionality factors and discuss their dependence on the boundary conditions. The values of the corresponding critical exponents for the decay length and the correlation length are the same, equal to 1/2 for the perfect gas, and 1 for the imperfect gas

    Passing through the bounce in the ekpyrotic models

    Get PDF
    By considering a simplified but exact model for realizing the ekpyrotic scenario, we clarify various assumptions that have been used in the literature. In particular, we discuss the new ekpyrotic prescription for passing the perturbations through the singularity which we show to provide a spectrum depending on a non physical normalization function. We also show that this prescription does not reproduce the exact result for a sharp transition. Then, more generally, we demonstrate that, in the only case where a bounce can be obtained in Einstein General Relativity without facing singularities and/or violation of the standard energy conditions, the bounce cannot be made arbitrarily short. This contrasts with the standard (inflationary) situation where the transition between two eras with different values of the equation of state can be considered as instantaneous. We then argue that the usually conserved quantities are not constant on a typical bounce time scale. Finally, we also examine the case of a test scalar field (or gravitational waves) where similar results are obtained. We conclude that the full dynamical equations of the underlying theory should be solved in a non singular case before any conclusion can be drawn.Comment: 17 pages, ReVTeX 4, 13 figures, minor corrections, conclusions unchange
    • 

    corecore