74 research outputs found

    The development of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas

    Get PDF
    Based on a previously developed rheumatoid arthritis MRI scoring system (OMERACT 2002 RAMRIS), the development team agreed which joints, MRI features, MRI sequences, and image planes would best illustrate the scoring system in an atlas. After collecting representative examples for all grades for each abnormality (synovitis, bone oedema, and bone erosion), the team met for a three day period to review the images and choose by consensus the most illustrative set for each feature, site, and grade. A predefined subset of images (for example, for erosion—all coronal slices through the bone) was extracted. These images were then re-read by the group at a different time point to confirm the scores originally assigned. Finally, all selected images were photographed and formatted by one centre and distributed to all readers for final approval

    Renormalization group and nonequilibrium action in stochastic field theory

    Full text link
    We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference adde

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale

    Youth representations of environmental protest

    Get PDF
    A necessary condition for a functioning democracy is the participation of its citizens, including its youth. This is particularly true for political participation in environmental decisions because these decisions can have intergenerational consequences. In this article we examine young people’s beliefs about one form of political participation - protest - in the context of communities affected by fracking and associated anti-fracking protest, and discuss the implications of these representations for education. Drawing on focus groups with 121 young people (age 15-19) in 5 schools and colleges near sites which have experienced anti-fracking protest in England and Northern Ireland, we find young people well-informed about avenues for formal and non-formal political participation against a background of disillusionment with formal political processes and varying levels of support for protest. We find representations of protest as disruptive, divisive, extreme, less desirable than other forms of participation, and ineffective in bringing about change but effective in awareness-raising. These representations are challenging, not least because the way protest is interpreted is critical to the way people think and act in the world. These representations of environmental protest must be challenged through formal education in order to safeguard the UN Convention on the Rights of the Child and ensure that the spirit of Article 11 of the UK Human Rights Act is protected

    Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10−9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42–0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation

    New constraints on ultraheavy dark matter from the LZ experiment

    Get PDF
    Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9  tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017  GeV/c2. Published by the American Physical Society 2024 </jats:sec

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV
    corecore