40 research outputs found

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.5−1.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    The TESS-Keck survey. II. An ultra-short-period rocky planet and its siblings transiting the galactic thick-disk star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultrashort- period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/ H] = -0.41 ± 0.05, [a/Fe]=+0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8M⊕ and 5.5+2.0-1.6g cm-3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3M⊕ and 1.6 ± 0.6 g cm-3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, groundbased photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    Stars and planetary system

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves

    Farm-level nutritional factors associated with milk production and milking behavior on Canadian farms with automated milking systems

    No full text
    ABSTRACT: The objective of this study was to describe the nutritional strategies used on Canadian dairy farms with automated milking systems (AMS), both at the feed bunk and the concentrate offered at the AMS, as well as to determine what dietary components and nutrients, as formulated, were associated with milk production and milking behaviors on those farms. Formulated diets (including ingredients and nutrient content) and AMS data were collected from April 1, 2019, until September 30, 2020, on 160 AMS farms (eastern Canada [East] = 8, Ontario [ON] = 76, Quebec [QC] = 22, and western Canada [West] = 54). Both partial mixed ration (PMR) and AMS concentrate samples were collected from May 1 to September 30, 2019, on 169 farms (East = 12, ON = 63, QC = 42, West = 52). We collected AMS milking data for 154 herds. For each farm (n = 161), milk recording data were collected and summarized by farm to calculate average milk yield and components. Multivariable regression models were used to associate herd-level formulated nutrient composition and feeding management practices with milk production and milking behavior. Milk yield (mean ± SD = 37.0 ± 0.3 kg/d) was positively associated with the PMR ether extract (EE) concentration (+0.97 kg/d per percentage point [p.p.] increase) and with farms that fed barley silage as their major forage source (n = 16; +2.18 kg/d) as compared with haylage (n = 42), whereas farms that fed corn silage (n = 96; +1.23 kg/d) tended to produce more milk than farms that fed haylage. Greater milk fat content (4.09 ± 0.28%) was associated with a greater PMR-to-AMS concentrate ratio (+0.02 p.p. per unit increase) and total diet net energy for lactation (+0.046 p.p. per 0.1 Mcal/kg increase), but a lesser percentage of NFC of the PMR (−0.016 p.p. per p.p. increase of NFC percentage). Milk protein content (3.38 ± 0.14%) was positively associated with the forage percentage of the PMR (+0.003 p.p. per p.p. increase of forage percentage) and the total diet starch percentage (+0.009 p.p. per p.p. increase of starch percentage), but was negatively associated with farms feeding corn silage (−0.1 p.p. compared with haylage) as their major forage. Greater milking frequency (2.77 ± 0.40 milkings/d) was observed on farms with free-flow cow traffic systems (+0.62 milkings/d) and was positively associated with feed push-up frequency (+0.013 milkings/d per additional feed push-up), but negatively associated with PMR NFC content and forage percentage of the total ration (−0.017 milkings/d per p.p. increase of forage percentage). Lastly, greater milking refusal frequency (1.49 ± 0.82 refusals/d) was observed on farms with free-flow cow traffic systems (+0.84 refusals/d) and farms feeding barley silage (+0.58 refusals/d) than with guided flow and farms feeding either corn silage or haylage, respectively. These data give insight into the ingredients, nutrient formulations and type of diets fed on AMS dairy farms across Canada and the association of those factors with milk production and milking behaviors
    corecore