22,242 research outputs found

    Reasoning About a Simulated Printer Case Investigation with Forensic Lucid

    Get PDF
    In this work we model the ACME (a fictitious company name) "printer case incident" and make its specification in Forensic Lucid, a Lucid- and intensional-logic-based programming language for cyberforensic analysis and event reconstruction specification. The printer case involves a dispute between two parties that was previously solved using the finite-state automata (FSA) approach, and is now re-done in a more usable way in Forensic Lucid. Our simulation is based on the said case modeling by encoding concepts like evidence and the related witness accounts as an evidential statement context in a Forensic Lucid program, which is an input to the transition function that models the possible deductions in the case. We then invoke the transition function (actually its reverse) with the evidential statement context to see if the evidence we encoded agrees with one's claims and then attempt to reconstruct the sequence of events that may explain the claim or disprove it.Comment: 18 pages, 3 figures, 7 listings, TOC, index; this article closely relates to arXiv:0906.0049 and arXiv:0904.3789 but to remain stand-alone repeats some of the background and introductory content; abstract presented at HSC'09 and the full updated paper at ICDF2C'11. This is an updated/edited version after ICDF2C proceedings with more references and correction

    Stellar Oscillons

    Get PDF
    We study the weakly nonlinear evolution of acoustic instability of a plane- parallel polytrope with thermal dissipation in the form of Newton's law of cooling. The most unstable horizontal wavenumbers form a band around zero and this permits the development of a nonlinear pattern theory leading to a complex Ginzburg-Landau equation (CGLE). Numerical solutions for a subcritical, quintic CGLE produce vertically oscillating, localized structures that resemble the oscillons observed in recent experiments of vibrated granular material.Comment: 12 Latex pages using aasms4.sty, 2 postscript figures, submitted to the proceedings of the Florida Workshop in Nonlinear Astrophysics and Physic

    Development of an aeroelastic stability boundary for a rotor in autorotation

    Get PDF
    <p>For the present study, a mathematical model AMRA was created to simulate the aeroelastic behaviour of a rotor during autorotation. Our model: Aeroelastic Model of a Rotor in Autorotation (AMRA) captures transverse bending and teeter, torsional twist and lag-wise motion of the rotor blade and hence it is used to investigate couplings between blade flapping, torsion and rotor speed. Lagrange’s method was used for the modelling of blade flapping and chord-wise bending. Torsional twist of the rotor blade was modelled with the aid of finite element method (FEM), and blade transverse bending could also be modelled in FEM. The model can switch between using a full FEM model for bending and torsion, or a FEM model for torsion and simple blade teeter, depending on the complexity that the user requires.</p> <p>The AMRA model was verified against experimental data obtained during a CAA sponsored flight test programme of the G-UNIV autogyro. Published results of modal analysis of helicopter rotor blades and other data published in open literature were used to validate the FEM model of the rotor blade. The first torsional natural frequency of the ’McCutcheon’ rotor blades was measured with the aid of high-speed camera and used for validation of the FEM model of blade torsional twist. As a further verification of the modelling method, AΓ©rospatiale Puma helicopter rotor blade data were compared on a Southwell plot showing comparison between experimental results and AMRA estimation.</p> <p>The aeromechanical behaviour of the rotor during both axial flight and forward flight in autorotation was investigated. A significant part of the research was focused on investigation of the effect of different values of torsional and flexural stiffness, and the relative positions of blade shear centre/elastic axis and centre of mass of the blade on stability during the autorotation.</p> <p>The results obtained with the aid of the model demonstrate the interesting, and unique, characteristics of the autorotative regime - with instabilities possible in bending and torsion, but also in rotorspeed. Coupled rotor speed/flap/twist oscillations (flutter and divergence) occur if the torsional stiffness of the blade is lower than a critical value, or if the blade centre of mass is significantly aft of the blade twisting axis, as is the case in helicopter pitch-flap flutter. The instability shown here, however, is specific to the autogyro, or autorotating rotor, as it is coupled with rotorspeed, and so differs from both helicopter rotor flutter and fixed-wing flutter. The coupling with rotorspeed allows a combined flutter and divergence instability, where the rotor begins to flutter in rotorspeed, teeter angle and torsional twist and, once the rotorspeed had dropped below a critical value, then moves into divergence in flap and rotorspeed. It was found that the aeroelastic behaviour of a rotor in autorotation is significantly affected by the strong coupling of blade bending stiffness and teeter angle with rotorspeed, and the strong coupling between blade aeroelastic twist and rotor torque.</p&gt

    Dynamic modal analysis of monolithic mode-locked semiconductor lasers

    Get PDF
    We analyze the advantages and applicability limits of the mode-coupling approach to active, passive, hybrid, and harmonic mode-locking in diode lasers. A simple, computationally efficient numerical model is proposed and applied to several traditional and advanced laser constructions and regimes, including high-frequency pulse emission by symmetric and asymmetric colliding pulse mode-locking, and locking properties of hybrid modelocked Fabry–Perot and distributed Bragg reflector lasers

    Flux penetration and a.c. losses in type II superconductors: I. Model calculations

    Get PDF
    A numerical method is presented which allows the calculation of the a.c. response of type II superconductors under quasi-static conditions for arbitrary jc (B,x), Ben (Ba) and Bex (Ba) relations. Flux distributions, induced voltage waveforms, hysteresis loops and a.c. losses have been calculated. Deviations between experimental results and earlier calculations with respect to a minimum in the a.c. losses are explained by taking into account the finite thickness of the sample and realistic Ben (Ba) and Bex (Ba) relations

    Supporting ODP - Translating LOTOS to Z

    Get PDF
    This paper describes a translation of full LOTOS into Z. A common semantic model is defined and the translation is proved correct with respect to the semantics. The motivation for such a translation is the use of multiple viewpoints for specifying complex systems defined by the reference model of the Open Distributed Processing (ODP) standardization initiative. The postscript version available here is an extended version of what was published

    Ultrasonic distance detection for a closed-loop spinal cord stimulation system

    Get PDF
    When stimulating the spinal cord at a constant strength, the current density in the spinal cord and thus the effects on chronic, intractable pain and vascular insufficiency will change with body position, due to the varying separation of the spinal cord and the stimulating electrode. The current density in the spinal cord has to remain between the perception and discomfort threshold (stimulation window) for a good therapeutic effect, i.e. that the patient does not suffer from pain. The stimulation window is very small. In current SCS systems the stimulus applied to the electrode is set at a constant value. A major improvement could be achieved when the distance between stimulation electrode and spinal cord could be measured and used to control the stimulus amplitude in a closed-loop system. An ultrasonic piezoelectric transducer was chosen to measure the distance between the electrode and the spinal cor

    Supersoft X-Ray Sources in M31

    Get PDF
    The nearby Andromeda galaxy (M31) has been observed with the ROSAT PSPC in a mosaic of 6 pointings with 25 ksec each. In the paper describing the results on the total sample of detected sources, Supper et al. (1996) also report the positions for 15 supersoft X-ray sources and the blackbody fit results for the brightest of these sources. We report here in more detail on the X-ray spectral characteristics of all these 15 supersoft X-ray sources. Optical multi-colour photometric data obtained in 1990 at the Michigan- Dartmouth-MIT Observatory at Kitt Peak were used originally in the selection process of the supersoft sources, and are the basis for the finding charts given here for most selected X-ray sources.Comment: 8 pages postscript incl. figures, Proc. of Workshop on Supersoft X-Ray Sources, to appear in Lecture Notes in Physics vol. 472 (1996

    Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis

    Get PDF
    The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths. CaOx stone-preventative diets are available nowadays, but seem to be marginally effective, as CaOx urolith recurrence occurs in patients fed these diets. In order to improve the preventative measures against CaOx urolithiasis, it is important to understand its aetiopathogenesis. The main research focus in CaOx formation in cats has been on the role of Ca, whereas little research effort has been directed towards the role and origin of urinary oxalates. As in man, the exogenous origin of urinary oxalates in cats is thought to be of minor importance, although the precise contribution of dietary oxalates remains unclear. The generally accepted dietary risk factors for CaOx urolithiasis in cats are discussed and a model for the biosynthetic pathways of oxalate in feline liver is provided. Alanine:glyoxylate aminotransferase 1 (AGT1) in endogenous oxalate metabolism is a liver-specific enzyme targeted in the mitochondria in cats, and allows for efficient conversion of glyoxylate to glycine when fed a carnivorous diet. The low peroxisomal activity of AGT1 in cat liver is compatible with the view that felids utilised a low-carbohydrate diet throughout evolution. Future research should focus on understanding de novo biosynthesis of oxalate in cats and their adaptation(s) in oxalate metabolism, and on dietary oxalate intake and absorption by cats

    Observations of the Vortex Ring State

    Get PDF
    This paper considers the vortex ring state, a flow condition usually associated with the descent of a rotor into its own wake. The phenomenon is investigated through experiments on simple rotor systems, and a comparison is then made with observations of a flow generated by a specially designed open core, annular jet that generates a mean flow velocity profile similar to the mean flow in a rotor wake in hover. In an experimentally simulated descent, the jet flow generates a flow state that shares many features of the rotor vortex ring state
    • …
    corecore