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Supporting ODP � Translating LOTOS to Z

John Derrick� Eerke Boiten� Howard Bowman and Maarten Steen
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�Email� jd�	ukc�ac�uk�


Abstract

This paper describes a translation of full LOTOS into Z� A common semantic
model is de�ned and the translation is proved correct with respect to the semantics�

The motivation for such a translation is the use of multiple viewpoints for spec�
ifying complex systems de�ned by the reference model of the Open Distributed
Processing �ODP� standardization initiative�

Key words� Open Distributed Processing� Z� LOTOS� Consistency�

� Introduction

The aim of this paper is to support the use of FDTs within distributed system design by
providing a translation between full LOTOS and Z�

An important example of open object�based distributed systems is the Open Dis�
tributed Processing �ODP� Reference Model� The ODP standardization initiative is a
natural progression from OSI� broadening the target of standardization from the point
of interconnection to the end�to�end system behaviour� The objective of ODP �	
� is to
enable the construction of distributed systems in a multi�vendor environment through the
provision of a general architectural framework that such systems must conform to� One
of the cornerstones of this framework is a model of multiple viewpoints which enables dif�
ferent participants each to observe a system from a suitable perspective and at a suitable
level of abstraction� There are �ve separate viewpoints presented by the ODP model

Enterprise� Information� Computational� Engineering and Technology� Requirements and
speci�cations of an ODP system can be made from any of these viewpoints�

The ODP reference model �RM�ODP� recognises the need for formalism� with Part
� of the RM�ODP de�ning an architectural semantics which describes the application
of formal description techniques �FDTs� to the speci�cation of ODP systems� Of the
available FDTs� Z is likely to be used for at least the information� and possibly other�
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by the U�K� Engineering and Physical Sciences Research Council under grant number GR�K������

	



viewpoints �the ODP Trader speci�cation is being written using Z for the information
viewpoint�� whilst LOTOS is a strong candidate for use in the computational viewpoint�

One of the consequences of adopting a multiple viewpoint approach to speci�cation
is that descriptions of the same or related entities can appear in di�erent viewpoints and
must co�exist� Consistency of speci�cations across viewpoints thus becomes a central
issue� Similar consistency properties arise outside ODP� see for example ���� We have
shown how consistency checking may be performed within a single FDT� ��� �� �� 	���
however� the real challenge lies in checking for consistency across language boundaries�
and this requires translation between FDTs�

The strategy we envisage to check the consistency of one ODP viewpoint written in Z
with another written in LOTOS is as follows� First translate the LOTOS speci�cation to
an observationally equivalent one in Z �thus preserving meaning�� then use the mechanisms
de�ned in ��� �� 	� to check the consistency of the two viewpoints now both expressed in
Z� �Note that this does not assume the two viewpoints are written at the same level of
abstraction��

Spec1 Spec2 Spec3

U(Spec2,Spec3)

Translate

Z viewpointLOTOS viewpoint

Consistency
check

LOTOS Z

The work described here makes a �rst step towards a solution� by de�ning a translation
of full LOTOS into Z� A common semantic model is de�ned and the translation is proved
correct with respect to this semantics� Section 
 explains the model� Sections � and �
then provide a semantics for LOTOS and Z in this model� Section � de�nes the LOTOS
to Z translation� which is veri�ed in section ��

� De�nitions

In �	�� extended transition systems �ETS� are used to de�ne a semantics for full LOTOS�
and we will use them as our common semantic model� An ETS combines a labelled
transition system with an abstract data de�nition�

��� Extended Transition Systems

An extended transition system provides a semantic model for the data in addition to the
control behaviour of a system� Given a signature �� and a set of variables V � the set of
terms over � and V is denoted T��V � �we assume it includes all boolean terms��

De�nition � An extended transition system is a ��tuple ETS � hS �E �A�R� s�� f�i where
S is a set of states of the ETS� E � S � Id is a �nite set of extensions on ETS� and






Id a �nite set of identi�ers� A is a set of actions on ETS �see below�� R is a set of
transition relations on ETS �see below�� s� is the initial state of the system� f� is the
initial assignment of the variables	

An ETS may be extended by substitution with another ETS for every extension in the set
E � thus the identi�ers in an extension hs�Pi act as temporary placeholders representing
that at state s the ETS behaves like speci�cation P � The translation from LOTOS to ETS
uses these extensions to describe process instantiation and recursion whilst generating a
�nal extension free ETS�

De�nition � Let G be a set of gates over which an extended transition system can com�
municate	 Actions are elements of G with a �nite list of attributes
 either a value or
variable declaration of the form �e� or a variable declaration of the form �v 
 t	 Let I be
a set of internal �unobservable� actions	 Elements of I are denoted i	 The set of actions
of an ETS is the set

A � fg�v� 
 t� � � ��vm 
 tm �e� � � ��en j g � G � I � ei � T��V �� vj � V g

The function name�a� returns the gate name in action a �either observable or internal�	

De�nition � Each element of the set of transition relations R is a ��tuple r � ha� s� s �� p� f i
where a is an enabling action� s� s � � S are states of the ETS �not necessarily distinct��
p � T��V � is an enabling predicate associated with r � f 
 V � T��V � is an action
function associated with r 	

The intuitive meaning of a transition relations r is that if the ETS is in state s and
the enabling action a is o�ered� then the enabling predicate is evaluated on the current
assignment of variables� When p is true� the ETS will go into the new state s � and the
variables are updated by the action function f �

In order that we may use extended transition systems to provide an operational se�
mantics for Z� we have relaxed the condition from �	�� that the set of transition relations
be �nite� and we have extended the attributes of a gate to include variable �as well as
value� declarations of the form �v �

��� Observational Equivalence in Extended Transition Systems

The use of observational equivalence and bisimulation lie at the heart of process algebras
�
� 	��� allowing equivalence between speci�cations to be asserted on the basis of observed
behaviour� However� it has traditionally su�ered from the disadvantage that for value�
passing processes� where the values are taken from an in�nite data�space� in order to check
for equivalence in�nite transition graphs must be compared� The solution to in�nite
transition graphs is to use symbolic bisimulations as the means to assert equivalence
�	�� 	���

In �	��� Chanson de�nes a relation
�

�� between states as the obvious extension of the
transition relation to action sequences where each observable action in � includes output
and�or input primitives with zero or more actual parameters� The induced equivalence
corresponds to the early bisimulation of �	���

�



De�nition � Let ETS � hS �E �A�R� s�� f�i be an extended transition system	

�a� Let s� s � � S� a�� � � � � an � A� and � denote a string of actions a�� � � � � an 	 Each
observable action includes output and�or input primitives with zero or more actual pa�

rameters	 The relation
�

�� is de�ned by
 s
�

�� s � i
 there exists s�� � � � � sn � S such that
s � s�

a��� s� � � � sn��

an�� sn � s �	 Note that s
�
�� s for all states s	

�b� Let s� s � � S� g�� � � � � gn � A � I � and � denote a string of observable actions

g�� � � � � gn� and i k a sequence of k internal actions	 The observable sequence relation
�

��

is de�ned by
 s
�

�� s � i
 there exists a sequence � � i k�g�i
k�g� � � � gni

kn of actions such

that s
�
�� s �	 Note that s

�
�� s � whenever s

ik

�� s �� and that s
�

�� s for all states s	

We can now de�ne weak bisimulation for extended transition systems�

De�nition � Let ETS� � hS��E��A��R�� s��� f��i and ETS� � hS��E��A��R�� s��� f��i be
extended transition systems� and �names�A�� � I � � �names�A�� � I �� ie the sets of
observable gate names in ETS� and ETS� are equal	 A relation R � S� � S� is a weak
bisimulation relation if for all pairs �s�� s�� � R and for any string � of observable actions


a whenever s�
�

�� s ��� there exists s �� � S� such that s�
�

�� s �� and �s ��� s
�

�� � R� and

b whenever s�
�

�� s ��� there exists s �� � S� such that s�
�

�� s �� and �s ��� s
�

�� � R	

De�nition 	 Let ETS� � hS��E��A��R�� s��� f��i and ETS� � hS��E��A��R�� s��� f��i be
extended transition systems	 Two states s� and s� are weak bisimulation equivalent �writ�
ten s� 	 s��� if there exists a weak bisimulation relation R � S��S� such that �s�� s�� � R	
ETS� and ETS� are weak bisimulation equivalent �written ETS� 	 ETS��� if there exists
a weak bisimulation relation R � S� � S� such that �s��� s��� � R	

We use the term observationally equivalent as a synonym for weak bisimulation equiv�
alence	

� Translation from LOTOS to ETS

A LOTOS speci�cation of a system de�nes the temporal relationships among the interac�
tions that constitute the externally observable behaviour of the system �
�� A speci�cation
consists of two parts
 the behaviour expression describes the process behaviour and its
interaction with the environment whilst the abstract data type �ADT� describes the data
structures and value expressions�

The translation from LOTOS to ETS given in �	�� is based on the standard transition
derivation system de�ned in �		� extended to cover data representation and value passing
in full LOTOS� The algorithm generates an extended transition system with a �nite set
of transition relations�

The transition rules work bottom�up beginning with the LOTOS terminals� A trans�
lation algorithm is then developed using the transition rules �full details are given in �	����
The transition rules generate a new extended transition system ETS for a behaviour B

�



which is generated from B � and B �� by application of LOTOS operators� Let B � and B ��

be LOTOS behaviour expressions� Assume there exists an extended transition system
ETS � � hS ��E ��A��R�� s �

�� f
�

�i associated with B �� and similarly for B ��� where S � and S ��

are disjoint� As an example� the transition rules for stop� choice and action pre�x are


	� For inaction� B � stop� we have ETS � hfs�g������� s�� �i� where we use � to
stand for the null function�


� For choice� B � B ���B ��� let R��s �

�� denote the transitions enabled from s �

�� then

ETS � hfs�g � �S � � fs �

�g� � �S �� � fs ��

� g��E �A� � A���R� s�� �i

where E � fhs��X i j X � �E ��s �

�� � E ���s ��

� ��g � �E � n E ��s �

��� � �E �� n E ���s ��

� �� and
R � fha� s�� s� p� f i j ha� s� p� f i � �R��s �

��� � �R���s ��

� ��g � �R� n R��s �

��� � �R�� n R���s ��

� ���

�� For action pre�x of the form B � gd� � � � dn �BE �� B �� we have

ETS � hfs�g � S ��E ��A� � fgd� � � � dng�R� s�� �i

where R � fhgd� � � � dn � s�� s
�

��BE � �ig � R��

� An ETS semantics for Z

The Z speci�cation language �	�� has gained acceptance as one of the viewpoint speci��
cation languages for ODP� particularly for the information viewpoint� Because ODP is
object�based� there is a need to provide object�oriented capabilities in FDTs used within
ODP� ZEST ��� is an extension to Z to support speci�cation in an object�oriented style�
developed by British Telecom speci�cally to support distributed system speci�cation�

ZEST does not increase the expressive power of Z� and a �attening to Z is provided�
What ZEST provides is structuring at a suitable level of abstraction by associating in�
dividual operations with one state schema� A class is a state schema together with its
associated operations and attributes� A class is a template for objects
 each object of the
class has a state which conforms to the class state schema� and is subject to state transi�
tions which conform to the class operations� In many ways ZEST is similar to Object�Z
���� although the latter does not provide a �attening to Z�

We use ZEST here to provide structuring at the right level and because it facilitates
a process algebraic view of Z based speci�cation� Since a �attening to Z is provided�
the work we derive here can be applied equally to Z itself� The standard semantics for
Z is denotational �	��� Consideration of object�oriented issues� however� leads naturally
to viewing objects as processes and hence to an observational view of the semantics of
the speci�cation� Z state changes occur by application of Z operation schemas� thus
an observational view regards invocation of a Z operation as a transition in a labelled
transition system �LTS��

We will provide an ETS for each ZEST speci�cation� in such a way that a LOTOS
speci�cation and its ZEST translation are observationally equivalent in the ETS seman�
tics� We are not alone in providing an LTS interpretation to object oriented versions of Z�
��� 	��� However� beyond describing such an interpretation� little work has been done on
its exploitation� In ��� and �	�� the basic idea used is that labels in the transition system
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are operation schema names together with any input�output values� A transition is added
whenever an operation is applicable at a node� which represents a particular binding of
state variables� We di�er from previous work in the labels we attach to transitions in the
system� Instead of using values as labels� we use variables and expressions as the labels�
This enables us to derive a symbolic transition system� and to represent a schema such as
�out � 
 Z j out � 
 �� as a single transition as opposed to an in�nite choice of transitions�

An internal event will be speci�ed either as a private operation schema �	�� or by a
distinguished schema operation name� eg i � as in LOTOS� This is a matter of convention
rather than semantic di�erence� and we adopt the latter here�

The semantics of a ZEST speci�cation is de�ned to be the ETS of the top level object�
We assume that all inheritance has been expanded out in the given ZEST class� The set
of variables in the ETS consists of all state variables de�ned together with all inputs and
outputs declared in the operation schemas�

The ETS of a ZEST object is derived from considering the application of the last
operation schema de�ned in the object to the ETS derived from the object excluding that
schema� Unlike the LOTOS to ETS mapping which generates a �nite set of transitions�
the ETS we shall derive from a ZEST speci�cation has a possibly in�nite set of transitions�
however� the derivation su�ces for veri�cation of our LOTOS translation� The purpose of
the ETS semantics for ZEST is purely to verify the LOTOS to Z translation� so while it
was necessary to generate a �nite ETS from LOTOS� such considerations do not matter
for the ZEST semantics� Once the ZEST semantics has been used to verify the translation
in section �� one does not need to refer to the ETS semantics for ZEST when performing
the LOTOS to ZEST mapping�

The base ETS

To start� the ETS of an object with no operations is de�ned� Consider the ZEST object


P
Attributes
State
Initial State

the ETS of this is given by ETS � hfs�g������� s�� f�i where f� is the assignment of
Initial State� ie the predicate� �The LOTOS translation always produces such an assign�
ment��

The inductive case

To calculate the e�ect of operations on the transition system� suppose that the ZEST
object

�



P �

Attributes

State

Initial State

Operation�
���

Operationn

has an associated ETS of ETS � � hS ��E ��A��R�� s �

�� f
�

�i� Then we calculate the ETS of

P

Attributes

State

Initial State

Operation�
���

Operationn

A

�where A is an operation schema� in terms of ETS � in the following fashion�

Consider each s � � S � in turn� Given such an s � � S �� we evaluate preA at that state
�ie on the current assignment of the variables�� If A is not applicable� no new relation is
added to R� and the ETS is not extended� If A is applicable at s �� then a new transition
is added to R� and the ETS is extended� We calculate the transitions as follows�

Calculating a transition from an operation schema

An operation schema A given by

A
��state vars�
Declarations

OpPred

maps to a transition r � ha� s �� s� p� f i where

	� a � A�x�� 
 t� � � ��xn� 
 tn �y�� 
 u� � � ��ym � 
 um for declarations x�� 
 t�� � � � � xn� 

tn � y�� 
 u�� � � � � ym � 
 um within A�


� p is the precondition of OpPred at the current assignment of variables�

�� f gives the e�ect on state and output variables of performing operations A� and

�� If the e�ect of f on s � produces an assignment of variables that corresponds to a
state s �� � S �� then s � s ��� If not �or it is undecidable�� then a new state� s is added
�S � S � � fsg��

�



For all states added which are not in S �� the e�ect of the object has to be calculated on
those states because an existing operation may be applicable at the new state� Therefore
all the operations Op�� � � � �Opn�A are applied to these new states to extend the ETS
further�

The result of this process is an ETS containing a �not necessarily �nite� set of transition
relations R� The �nal ETS consists of the updated set of states and transitions� together
with E � E �� A � A� � fag� s� � s �

�� f� � f �

� �

� Translation from full LOTOS to Z

The essential idea behind the translation is to turn LOTOS processes into ZEST objects�
and hence if necessary into Z� The ADT component of a LOTOS speci�cation is translated
directly into the Z type system� For the behaviour expression of a LOTOS speci�cation�
we �rst derive the ETS from the LOTOS� and use this to generate the Z speci�cation�
This will involve translating each LOTOS action into a ZEST operation schema with
explicit pre� and post�conditions to preserve the temporal ordering�

For example� given a LOTOS process in�x 
 nat � out ��x �
�� stop� this will be trans�
lated into a ZEST object which contains operation schemas with names in and out � The
operation schemas have appropriate inputs and outputs to perform the value passing de�
�ned in the LOTOS process� Each operation schema includes a predicate �derived from
the ETS� to ensure that it is applicable in accordance with the temporal behaviour of
the LOTOS speci�cation� Because a �nite ETS is generated from any LOTOS speci�ca�
tion �see �	���� a ZEST speci�cation can be generated which fully describes the LOTOS
correctly�

Thus we are in fact embedding part of an intermediate semantics for LOTOS within
Z �to preserve the temporal ordering�� The operation schemas �apart from the tempo�
ral ordering� could in fact be generated directly from the LOTOS speci�cation without
recourse to the ETS semantics�

Because we are using the ETS of a LOTOS speci�cation� none of the original syntactic
structure is preserved� All the processes are expanded out into one possible behaviour� and
this generates one ZEST object� Thus� in particular� communication has been resolved
before translation into Z� Clearly work needs to be done to ensure preservation of as much
syntactic structure as possible�

��� Translation Algorithm for Behaviour Expressions

Let ETS � hS �E �A�R� s�� f�i be the unique �nite extended transition system associ�
ated with the LOTOS behaviour expression P � The translation T �P� of the behaviour
expression P will be the ZEST object given by


�Id �

�



P

States 		 S

s 
 States

Ext 
 States � Id

Declarations derived from the transition relation R

Ext 	 E

INIT

��s�

s 	 s� � f�

Operation�
���

Operationn

Whenever Ext � �� the translation will omit Ext from the state schema completely�

Operation Schemas

The operation schemas contained within the ZEST object are derived from the �nite set of
transition relations generated from the LOTOS speci�cation� For each r � R we generate
a �partial� operation schema� and when all relations in R have been considered we merge
together operation schemas which have the same name in a manner we describe below�

Let r � ha� s�� s�� p� f i � R with g � name�a�� Then r will de�ne a template schema
of the form


g

��s�

Declarations derived from a

�transition condition derived from s�� s���

�pre�constraint derived from p��

�post�condition derived from f �

The constituent parts of this are


	� Transition condition
 The transition predicate will be �s � s� � s � � s���


� Declarations
 An action of the form g�x� 
 t� � � ��xn 
 tn �E� � � ��Em is translated to
the declaration

g
��s����x�� � � � � xn�
t�ch�� 
 t�� � � � � tnchn� 
 tn
tn��chn��� 
 tn��� � � � � tn�mchn�m � 
 tn�m

� � �

�



where tn�i � type�Ei�� and the appearance of tj in a declaration tj chj� or tj chj � is its
syntactic representation as a string of characters� This is needed for technical reasons�

In addition� the state schema is amended to include the declarations
 x� 
 t�� � � � � xn 
 tn �

�� Pre�constraint
 The pre�constraint is derived from the input�output of an action
together with the predicate p� For an action of the form above� the pre�constraint is


�x �

� � t�ch�� � � � � � x �

n � tnchn�� � �tn��chn��� � E� � � � � � tn�mchn�m � � Em��
p�t�ch���x�� � � � �tnchn��xn �

where p�u�v � denotes substitution in the standard fashion� A further relabelling is also
applied to p and the expressions Ei 
 for any variable� x say� which is bound when consid�
ering the schema alone �ie its binding occurrence occurs at the gate under consideration��
any other subsequent occurrence of x in that action are replaced by x �� Furthermore� for
any free variable� say y � that appears in the expressions Ei we conjoin �y � y �� to the
predicate p� An example will make this clear


�a� g�x 
 t���x � 
� will become


g
��s����x �
t�ch�� 
 t�
t�ch�� 
 t�

�x � � t�ch�� � t�ch�� � �x � � 
��
� � �

where here the relabelling has been applied to the expression E� � �x � 
��

�� Post�condition
 By construction� the action function f in the transition relation r
will consist of a �nite number of assignments of the form v � E � These are re�written as
v � � E � Binding occurrences of a variable are relabelled as in the predicate p described
above�

Merging Schemas together

Given two partial operation schemas with the same name� built from two di�erent tran�
sition relations� we combine them by merging the declarations in the usual fashion �there
can be no clashes by construction� and taking the disjunction of the predicates�

For example� given the behaviour input�x 
 t � a�y 
 u� input ��x � 
��y � stop� we
generate two partial schemas describing the operation input 


input

��s����x �

tch�� 
 t

�x � 	 tch�� � s 	 s� � s � 	 s��

input

��s�

tch�
 
 t � uch�
 
 u

�tch�
 	 �x � �� � uch�
 	 y � s 	 s� � s � 	 s��

��x � 	 x � � �y � 	 y�

the combined schema will be


	�



input

��s����x �

tch�� 
 t

tch�
 
 t � uch�
 
 u

�x � 	 tch�� � s 	 s� � s � 	 s�� �

��tch�
 	 �x � �� � uch�
 	 y � s 	 s� � s � 	 s�� � �x � 	 x � � �y � 	 y��

To derive a ZEST translation from a LOTOS speci�cation� we apply the translation
algorithm to derive a unique �nite ETS from the LOTOS speci�cation� then apply the
above translation rule to derive the ZEST object�

��� Translation of Data Types

In LOTOS� data types are speci�ed using the language for abstract data types ACT
ONE� ACT ONE is an algebraic speci�cation method to write parameterized as well as
unparameterized ADT speci�cations� These can be translated directly into the Z type
system by writing the algebraic equations as axiomatic declatations in Z� The translation
is straightforward in comparison with the translation of LOTOS behaviour expressions�
and we illustrate the approach in the example given later� Z has the ability to represent
all ACT ONE data types within it� however� two features cannot be modelled within the Z
type system at this level of abstraction� namely those of naming a data type speci�cation
and the renaming of types�

� Proof of Translation

A translation from LOTOS to Z must preserve the ETS semantics� We denote the mapping
of LOTOS into an ETS by ����LOTOS � and that of Z into an ETS by ����Z � Within the
semantics we are not concerned with exact denotations� but rather that the denotations
are observationally equivalent� Thus we need to verify that ��SpecL��LOTOS 	 ��T �SpecL���Z
for every LOTOS speci�cation SpecL�

Let ETSL and ETSZ be the extended transition systems derived from SpecL and
T �SpecL� respectively� We construct a relation R between the states of ETSL and ETSZ
which will de�ne a bisimulation �in fact it de�nes a strong bisimulation� by de�ning R to
contain the initial states� and then adding subsequent pairs of states as needed�

Let ETSL and ETSZ have initial states s� and u� respectively� Then set �s�� u�� � R�
We shall show that if �s�� u�� � R and s�

a
�� s� in ETSL� then we can �nd a state u� in

ETSZ such that u�
a
�� u�� The other half of the bisimulation is similar�

Let �s�� u�� � R� and suppose that s�
a
�� s�� where the action a is of the form

g�x 
 t��y and y has sort t� �wlog we can assume just one input and output� the argument
generalises to any �nite number of inputs and outputs�� Then 
 r with r � ha� s�� s�� p� f i
in ETSL�

Then what does the Z speci�cation derived from ETSL contain� The relation r gives
rise to a partial schema with name g � viz


		



g

��s����x �

t�ch�� 
 t�
t�ch�
 
 t�
Other declarations derived from other transition relations

��s 	 s� � s � 	 s�� � �x � 	 t�ch��� � �t�ch�
 	 y�� � p��t�ch���x � � f �� �

Other predicates from other transition relations

where � denotes the relabelling of x to x � in y � p and f �
When we calculate the ETS of the Z speci�cation� this schema will give rise to one or

more transition relations within ETSZ � To �nd the relations in ETSZ � we have to �nd
out whether g is applicable at this state u�� Now this schema is applicable whenever

�� s � �s 	 s�� � pre g� � pre g�s��s�

� � s �� x �� t�ch�
 � ��s
� 	 s� � x � 	 t�ch��� � �t�ch�
 	 y�� � p��t�ch���x � � f ��

� p��t�ch���x �

is true�

Now since p evaluates to true at s� in ETSL� p
��t�ch���x � will be true� Thus the

relation

hg�t�ch�� 
 t��t�ch��� u�� u� p��t�ch���x �� F i

will be added to ETSZ for some possibly new state u� Call this state u��

What is the action function F� F is the predicate that gives the e�ect on state and
output variables of performing operation schema g at s�� so F will be

�s � � s� � x � � t�ch��� � �t�ch�� � y�� � f �

What is the e�ect of invoking action a in ETSL with a particular input� Let a be
invoked with input x � n� Then the result is output y �n�x � and the e�ect on variables
is f �n�x �� Does this happen in ETSZ� If g is invoked with input n� then the result is
�x � � n� � �t�ch�� � y�� � f �� Hence the e�ect both in terms of output and e�ect on
variables is the same in ETSZ as in ETSL�

Set �s�� u�� � R� Then by construction� the relation R is the desired bisimulation�

� Example

We illustrate the translation algorithm and the semantic mappings by an example� Con�
sider the LOTOS speci�cation


Speci�cation Max� �in�� in�� in�� out�
type natural is

sorts nat

opns � 
� nat

	




succ 
 nat � nat

largest 
 nat �nat � nat

eqns

forall x � y 
 nat
ofsort nat

largest��� x � 	 x �
largest�x � y� 	 largest�y � x ��
largest�succ�x �� succ�y�� 	 succ�largest�x � y���

endtype

behaviour

hide mid in �Max��in�� in��mid � j �mid � j Max��mid � in�� out ��

where

process Max��a� b� c� 
 noexit 
	

a�x 
 nat � b�y 
 nat � c
largest�x � y�� Max��in�� in�� in�� out �

��

b�y 
 nat � a�x 
 nat � c
largest�x � y�� Max��in�� in�� in�� out �

endproc

endspec

Renaming x and y to x�� y� and x�� y� to avoid name clashes in calls to Max
� we derive
the extended transition system �	��


hfs�� � � � � s��g��� fin	� in
� in�� out � ig�R� s�� �i

where the transition relations in the ETS are


hin��x� 
 nat � s�� s�� true� �i� hin��y� 
 nat � s�� s�� true� �i� hin��y� 
 nat � s�� s�� true� �i�

hin��y� 
 nat � s�� s�� true� �i� hin��y� 
 nat � s�� s	� true� �i� hin��x� 
 nat � s�� s�� true� �i�

hin��y� 
 nat � s�� s
� true� �i� hin��x� 
 nat � s�� s	� true� �i� hin��y� 
 nat � s�� s
� true� �i�

hi � s�� s�� true� x� 	 largest�x�� y��i� hin��y� 
 nat � s�� s�� true� �i� hin��y� 
 nat � s	� s�� true� �i�

hi � s�� s��� true� x� 	 largest�x�� y��i� hin��y� 
 nat � s�� s��� true� �i� hin��x� 
 nat � s
� s��� true� �i�

hin��y� 
 nat � s�� s��� true� �i� hi � s�� s��� true� x� 	 largest�x�� y��i� hin��y� 
 nat � s��� s��� true� �i�

hi � s��� s�	� true� x� 	 largest�x�� y��i� hout 
largest�x�� y��� s��� s�� true� �i�

hout 
largest�x�� y��� s��� s�� true� �i� hout 
largest�x� � y��� s��� s�� true� �i�

hout 
largest�x�� y��� s�	� s�� true� �i

The translation algorithm will produce a ZEST speci�cation with the following represen�
tation of the type natural


�nat �

� 
 nat
succ 
 nat � nat
largest 
 nat � nat � nat

� x � y 
 nat � largest��� x � � x
� x � y 
 nat � largest�x � y� � largest�y � x �
� x � y 
 nat � largest�succ�x �� succ�y�� � succ�largest�x � y��

	�



Notice that in the translation of constants we remove the arrow� as in � nat � The
commas in an n�ary operation are replaced by � in the Z translation� The ofsort nat
is super�uous in the Z speci�cation� The one aspect which is not translated is the name
given to encapsulated signature plus equations�

The behaviour in the LOTOS speci�cation is represented in the ZEST speci�cation
as an object �after a small amount of simpli�cation�


P

States 		 fs�� s�� s�� s�� s�� s	� s�� s
� s�� s�� s��� s��� s��� s��� s�	� s��g

s 
 States

x�� x�� y�� y� 
 nat

INIT

��s�

s 	 s�

in�

��s����x��

natch�� 
 nat

natch�� 	 x �

� � ��s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s	� � �s 	 s
 � s � 	 s����

in�

��s����y��

natch�� 
 nat

natch�� 	 y �

� � ��s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s
� � �s 	 s	 � s � 	 s���

in�

��s����y��

natch�� 
 nat

natch�� 	 y �

� � ��s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s	� � �s 	 s� � s � 	 s
��

�s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s��� � �s 	 s� � s � 	 s��� � �s 	 s�� � s � 	 s����

i

��s����x��

x �

� 	 largest�x�� y���

��s 	 s� � s � 	 s�� � �s 	 s� � s � 	 s��� � �s 	 s� � s � 	 s��� � �s 	 s�� � s � 	 s�	��

out

��s�

natch�
 
 nat

natch�
 	 largest�x�� y�� � �s 	 s�� � s 	 s�� � s 	 s�� � s 	 s�	� � s � 	 s�

	�



	 Conclusions

The work described here aims to provide a �rst step in de�ning a translation between
LOTOS and Z� The translation mechanism was de�ned� together with a common semantic
framework that veri�es the translation algorithm�

Extended transition systems provided the common semantic framework and the rela�
tionship between the ETS semantics for LOTOS and the standard LTS semantics needs
to be explored� However� although we have used an ETS semantics for LOTOS� any LTS
semantics for LOTOS that could be embedded in a �nite ETS will produce a translation
to Z correct with respect to that semantics�
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