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Dynamic Modal Analysis of Monolithic
Mode-Locked Semiconductor Lasers

Eugene A. Avrutin, Member, IEEE, John M. Arnold, and John H. Marsh, Fellow, IEEE

Abstract—We analyze the advantages and applicability limits
of the mode-coupling approach to active, passive, hybrid, and har-
monic mode-locking in diode lasers. A simple, computationally ef-
ficient numerical model is proposed and applied to several tra-
ditional and advanced laser constructions and regimes, including
high-frequency pulse emission by symmetric and asymmetric col-
liding pulse mode-locking, and locking properties of hybrid mode-
locked Fabry-Perot and distributed Bragg reflector lasers.

Index Terms—Modeling, mode-locking (ML), optical pulses,
semiconductor lasers, ultrafast optics.

1. INTRODUCTION

ODE-LOCKING (ML) of monolithic semiconductor

laser diodes (LDs) attracts considerable interest,
first, for an increasing number of practical applications in
microwave optoelectronics, (e.g., microwave over fiber),
high-speed OTDM, and WDM communications (see [1] for an
overview) and, second, from a purely scientific point of view,
as an important prototype system in nonlinear dynamics and
synergetics and as a manifestation of high-speed nonlinearities
in active semiconductor media. Computationally efficient phys-
ically instructive theoretical models with predictive capabilities
are, therefore, useful for a detailed understanding of the physics
of these devices, analysis of their behavior and, ultimately,
optimization of construction and operation regimes. A number
of theoretical approaches to ML in LDs have been attempted in
the last decade (see [1] for an overview). Most of these operate
in the time domain and have progressed from modifications
[2]-[4] of the classical semianalytical self-consistent pulse
profile (SCP) theory (originally developed by H. Haus in the
1970s for gas and solid-state ML lasers), through intermediate
level models [5], [6], to powerful distributed time-domain mod-
eling (DTDM) techniques widely used recently for modeling
dynamics and spectra of various LDs, including mode-locked
lasers [1], [7]-[13]. However, SCP-type theories are plagued by
a number of inaccuracies for semiconductor lasers [1], whereas
DTDM modeling, while very powerful, can be taxing on com-
puter resources and, being a purely numerical method, does not
always provide physically instructive insight into interrelations
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between parameters. To achieve a combination of accuracy,
physical transparency, and instructiveness in treating complex
laser dynamics, it is very useful to supplement time-domain
modeling by a modal analysis that treats the laser dynamics
at least partly in frequency domain by means of (longitudinal)
mode decomposition. The foundations of this approach for
a generic class B mode-locked laser were developed by H.
Haus at the same time as the SCP theory, with an emphasis on
active ML [14]. Lau and co-workers [15]-[20] extended the
approach to semiconductor lasers and successfully explained
a number of important trends in the behavior of mode-locked
lasers using simplified models that involved only three modes
[15], [16], [20], or, in the opposite extreme, a continuum of
modes [17]-[20]. This approach was extended by our team [1],
[13], [21] and other authors [22], [23] to take into account a
finite number of modes and to incorporate some specialized
laser structures [24], [25]. So far, however, the progress in the
time-domain analysis of ML LDs has not been matched by the
modal decomposition approach, with no journal publication on
this technique approaching the generality of the DTDM model.
Here, we present the full version of the modal decomposition
approach which: 1) is rigorously derived with the underlying
approximations and limitations assessed; 2) includes some
important effects (e.g., fast nonlinearities and group-velocity
dispersion) neglected by other authors; 3) is applicable to a
broad range of laser constructions [including harmonically
mode-locked structures and distributed Bragg reflector (DBR)
lasers] and operation regimes (active, passive, hybrid, and
synchronous ML); and 4) is capable of describing both
steady-state behavior and dynamics of mode amplitudes and
phases. The organization of the paper reflects these features.
Section II presents the derivation of the model and discusses
the assumptions involved in this derivation. Section III presents
the application of the model to simulate static and dynamic
behavior of some traditional and novel laser constructions.
Section IV contains the summary and conclusion.

II. MODEL

A. Slow and Fast Variables in Mode Decomposition

The principle of longitudinal mode decomposition is well
known; it means that the time and space dependence of the
lasing light in the cavity is represented in the generic form of

Esp(r,t) = ®(z,y) Y Ex(t)Ui(2,1)
k

X exp (L (wit + Q/Jk(t))) +cc (1
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where @ is the transverse-lateral mode profile, and Fy, wy, ¥k,
and Uy are amplitudes, frequencies, phases, and spatial profiles
of longitudinal modes, respectively (strictly speaking, ® can be
also a function of k, albeit weak, because of waveguide disper-
sion). However, a meaningful definition of longitudinal modes
and, therefore, of the functions Uy, for a realistic semiconductor
laser is not entirely straightforward. Indeed, the laser is an open,
inhomogeneous optical cavity with gain and loss. Moreover, in
a multimode laser, the dielectric permittivity is always time-de-
pendent, even during nominally continuous-wave operation, due
to mode beating. Most papers on modal analysis of mode-locked
LDs [15]-[22] used simple standing waves (Uy ~ cos(wkz/L),
where L is the cavity length) as a basis of mode decomposi-
tion. However, these are not true eigenmodes for an open laser
cavity and, so, their use is mathematically unjustified, partic-
ularly for describing cavities other than a simple Fabry—Perot
resonator (such as a DBR resonator or a coupled-cavity con-
struction). An opposite approach to modes in semiconductor
lasers involves calculating true, instantaneous mode profiles of
the realistic cavity at each moment in time, using instantaneous
local values of the complex dielectric constant. This approach
was most fully developed [26] for single- (or dual) mode DFB
lasers. To the best of our knowledge, it has not been applied to
ML, though, in a recent paper, Feiste [27] has used it to ana-
lyze applications involving resonant modulation of DBR lasers,
which may be seen as a special degenerate case of active ML.
A generalization to fully rendered ML should be, in principle,
straightforward. However, this technique, being exactly math-
ematically equivalent to DTDM modeling [27], is as general
as DTDM—but, by the same token, tends to be no more, and
sometimes less, computationally efficient [28]. Here, we use an
intermediate approximation, which is more realistic and general
than the simple standing-wave expansion but less cumbersome,
if somewhat less general, than the true instantaneous mode cal-
culation. We make use of the fact that in most multimode lasers,
frequency distances between all adjacent modes are close to a
nominal round-trip frequency AQy = v,/2L., L. being the
characteristic size of the laser cavity (the physical cavity length
for a Fabry—Perot resonator, or the effective length, defined in
Section III, for a DBR cavity), and vy = c/ng, the group ve-
locity of light (n, = n 4+ w - On/dw being the group refractive
index in the waveguide). Then, we define a parameter (say, A) as
slow if its temporal evolution is much slower than the round-trip
frequency

0A
‘at < [AQpA] @
and fast otherwise (i.e., when |0A/0t| ~ |AQgA|). It is then
natural to describe all the fast laser dynamics in frequency-do-
main terms via the decomposition (1) and all the slow dynamics
in time domain through the temporal dynamics of the parame-
ters Fy, 1, and Uy. The mode profiles Uy then describe the
open and inhomogeneous cavity and are instantaneous, as in
[26], [27]—but only on the slow time scale, which makes for
much more efficient calculations. The model is essentially the
same as that used in our earlier work [13], [21], [24], but will
be described here, first, because our previous papers presented
the model without derivation and, second, because the present

version is more general than those used before and applies to
more laser constructions.

B. Field and Polarization in the Laser. Weak Modulation
and Nonlinearity Approximation

Concentrating on longitudinal effects, we shall assume that
strong built-in index guiding ensures a single transverse/lateral
mode with a profile ®(z,y) as in (1). Then, we may start with
the one-dimensional wave equation in the general form

0? 10?2 ., 1 02
——ZIp =_—_—1TP 3
022 2 Ot2 gl c2 Ot2 L)
Here, F(z,t) the longitudinally varying field

(Esp(z,y,2,t) = &(z,y)E(z,t)), measured in units such
that its square equals the photon density (averaged over
an optical oscillation period); 7(z) the effective waveguide
refractive index that describes the nonresonant (built-in)
dielectric properties, including built-in Bragg grating(s), if
any. Finally, P is the resonant component of the dielectric
polarization which is associated with the lasing transition and
restricted to the active layer, hence, the optical confinement
factor I'. The symbol ~ over a parameter notation means that
the corresponding parameter is, strictly speaking, dispersive
(optical frequency dependent) and, in the time domain
formalism of (3), should be understood as an operator, e.g.,
iE = FT '[n(z,w) - FT(E)], where FT and FT ! are the
direct and inverse Fourier transforms between time (¢) and
optical frequency (w) domains. In realistic lasers, the material
dispersion tends to be comparatively weak (in the sense
that the relative variation in the parameters over the lasing
spectrum is small) but it is retained here, since group velocity
dispersion has been shown to be of some importance in some
mode-locked laser constructions [1], [12]. Next, we introduce
the rotating wave notation

E(z,t) = giwrert
X (Er(z,t)efifﬁ"efdz + El(z,t)eifﬂ"efdz) + c.c.
“)

where wyer and Srer = N(2)wret /¢ are the reference optical fre-
quency and longitudinal wave vector, respectively [the latter,
as in [27], is allowed a (weak) z-dependence for convenience,
to allow slightly different 3,..¢ values to be assigned to cavity
sections of different physical nature, i.e., active sections, pas-
sive sections, grating sections, saturable absorbers etc.], and
F, and F; are the “slow amplitudes” [“slow” in the sense of
((0/0t)E,i| < |wEral; [(0/02)Eyry| < |BE| though not
necessarily in the sense of (2)] of right- (forward-) and left- (re-
verse-) propagating fields, respectively. It is then convenient,
following the notations of [26], [27], [29], to introduce a two-
dimensional “vector” E defined as

E,(z,t)
E = y .
(th) {El(z,t) } 4)
Similar “vector” notations may be introduced for the reso-
nant polarization P. Let us now consider this latter parameter

in more detail. It is well known that the main dynamic variable
that describes the active layer medium and, thus, parameterizes
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the polarization P is the free carrier density N (z,t). For sub-
sequent analysis, we shall separate components of this variable
varying with time at different time scales

N(z,t) = No(z,t) + Z Np(z,t)e™3%t fcc. (6)

m=1

In (7), Ny is the slow component of N and the rest of the
terms in the series are fast, though all the amplitudes N,,,, m =
0,1,2...areslow quantities. Physically, the fast terms represent
the density response to longitudinal mode beating (important in
passive ML) and/or to external resonant modulation (e.g., in ac-
tive ML). In multigigahertz lasers, we may expect these quanti-
ties to be small

INw| < Ng, m=1,2.... (7)

since the characteristic time of the relaxation of N is much
longer than 1/ Af2q. In the resonant polarization P, we can then
separate several terms of different physical nature, namely

P:P0+Pqe+Pne+Prm 3

The first term P, is associated with the slow component Ny
of the carrier density and may be written as

1 5(Ng) — né‘n(zvo)) E O

Wref

PO = ZE(N())E ~ (—

where Ae(N,w) is the interband component of the dielectric
constant, which includes the gain g(N,w) and the density-de-
pendent refractive index An(w). The polarization P, does
not depend on the light intensity directly, only parametrically
through the dynamics of Ny. We shall, therefore, refer to it as
the quasi-linear term. The next two terms in (8) then describe
the nonlinear polarization, explicitly dependent on the light
intensity. The former of the two, quasi-equilibrium term, Py,
is associated with the fast oscillations N,,(m = 1,2...) of
total carrier density. The following, nonequilibrium term P,
is introduced to describe fast optical nonlinearities. These
describe nonlinear optical response of the active medium due
to effects related to the deviation of the energy distribution of
carriers from equilibrium at constant total local density N.
Such effects include spectral hole burning, dynamic carrier
heating, well-barrier nonequilibrium, and, for the case of
quantum well-saturable absorbers, kinetics of exciton ion-
ization. The final term in (8) P,,, is due to external resonant
modulation of the dielectric constant at or near the round-trip
frequency and/or its harmonics and is only present in active,
hybrid, or synchronous ML. To achieve sufficient analytical
progress in the model, we need to treat all three nonlinear and
modulation-induced polarization terms as small corrections to
the quasi-linear term. This weak nonlinearity and modulation
approximation, although not universal, is sufficient for treating
many laser constructions and regimes of practical interest.
Indeed, the small correction nature of the quasi-liequilibrium
term P, follows from (7); the fast nonlinearities that lead to
the nonequilibrium term P, are well known to be relatively
weak in most practical cases; and, finally, strong-signal mod-
ulation is hardly practical at the multigigahertz frequencies

of interest here (nor is it necessary to achieve ML). In the
derivation below, we assume, therefore

|AP| < |Po)| AP =Py+ Puc+ Pim. (10)

C. Modes of the Laser Cavity

Now, we substitute (8) and (9) into (3) and rewrite (3) with
the aid of (4) in terms of amplitude vectors (5). The result is
conveniently expressed in a matrix operator notation as in [26]
and [27]

8E _ ﬁE—i— Wref

ot 2nmg

P. (11)

with the matrix operator H defined as

nen (3 ) - (G0 &) e

(12)
Here,

— ~ w.

Aﬂ(zvt)(zvt): /B('th)_ﬂrc‘fz

ref X 5 [N
“LAB(= 1)+ (5, )
defines the local complex wavevector. The relation between
its real and imaginary parts may, to a first order, be approx-
imated using the Henry linewidth enhancement factor o
An = —agce/wre. Ky and K, stand for distributed coupling
between right- and left-propagating waves (K,; = K, = 0
everywhere except DFB or DBR sections, if any). To define the
operator H fully, (12) is completed with boundary conditions

at the facets
L L
El=)=pFE | =

L L
5 (~5) = e (-3)
(13)

where p,.; = 7, exp(—i2 fOiL/ 2 Bretdz) are effective right and
left reflectances for slow amplitudes (generally speaking, they
differ from physical reflectances 7, ,. by random phase factors,
though this is only important in complex laser constructions
such as grating lasers, or compound-cavity structures which also
need an additional boundary condition [24]).

R We then choose the eigenfunctions Uj(z,t) of the operator
H, defined by the expression

HUy = 2,U, (14)
as the basis functions of the expansion. The complex eigen-
values (2, = (2;, — iy, describe the (relative) mode frequency
{2}, and the net modal amplitude gain 7. To project the wave
equation on the basis of the functions Uy (z,t), we introduce
the inner product of two functions defined as [26], [27], [29]

UV = | do(U Vi + UV,) (15)

—ur

[~

and use the properties of the operator H and its eigenfunctions
and eigenvectors established in the literature [26], [27], [29].
The most important of these properties are the orthonormality

Uk*Um = 6km (16)
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(the unity factor at the Kronecker symbol being ensured by ap-
propriate normalization of Uy) and the completeness of the set

> h(t)Ur(z,t)

k=—o0

a7

[for any field profile W satisfying the boundary conditions as in
(13)]. In laser constructions used for ML, we may expect that the
frequency difference between the two adjacent modes is never
far detuned from the “nominal” intermodal interval A {2,

|2 — 2y — Ao < A2

and, moreover, that |y;| < A for all modes. By numbering
the eigenfunctions so that the mode number zero is the one
nearest to the reference frequency wy.+ and choosing wyet ap-
propriately, we may also ensure that [Q2g| < A€. Then, we
may rewrite the solution (1) of (11) in “vector” notations and
with wy, = EAQg + Wret

E(z.t) = Y Eu()U(z, 1) exp (i(kAQOt ¥ 1/1k(t))) tec

k

(18)
Furthermore, we note that in a mode-locked laser, the modes
are shifted from their “cold-cavity” positions and the intermodal
interval is only approximately equal to the nominal value AQy.
This means that even in the steady-state ML regime, the phases
1y (t) vary (linearly) with time. To get a more instructive model,

it is convenient to recalibrate the phases

alt) = olt) + / (ka0 - A%0) + (1) d (19)

Here, AQ(t) — AQg and Q.(t) are dynamic corrections to
the intermodal interval and the position of the reference (zero)
mode, respectively, defined in such a way that in a steady-state
multimode regime such as ML, the recalibrated phases ¢, are
constant. Apart from this requirement and the provision that
2] < AQq, |AQ — AQy| < AQy, the definitions of the
calibration functions A(¢) and Q.(t) are largely arbitrary
and, within the numerical accuracy limits, should not affect the
“measurable” parameters given by the model (such as mode
intensities). Our method of estimating these functions will be
discussed below.

D. Rate Equations for Complex Mode Amplitudes.
Moderate-Dispersion Approximation

Substituting the mode decomposition in the form of (18) into
(11) for the light field results in a system of rate equations which
are most compactly expressed in terms of complex mode ampli-
tudes

Ex(t) = Ey(t)ek®
iEk ~ L(.Qk — kAR - 1 )

dt
Z"-)ref % —1 (kAQ+QC)dt
e (VT J }

Mg

. (20)

slow

Here, the first term describes the starting approximation,
neglecting the modulation and nonlinear polarization terms

AP. As can be expected from the definition of the eigenmodes
U\, this approximation corresponds to the case of uncoupled
modes as the first term includes only parameters of the same
kth mode. The modes are only coupled by the second term that
includes AP. Using the weak nonlinearity condition (10), we
treat these terms in the first order of the perturbation theory,
using U}, as the starting approximation eigenfunctions. The
subscript slow means the slow, resonant component (the fast,
nonresonant, components are corrections of a higher order
due to their oscillating nature). The same weak nonlinearity
condition (10) means that the nonlinear terms Py and Py
in (10) and (20) need include only the lowest, third, order
nonlinearities. In the present version of the model, we shall
neglect wavelength-scale nonlinear effects such as self-induced
gratings. Then, the general form for the nonlinear terms is

ene)_47r Z

k1,k2,k3
xUp, e [ (1 +k2—k3) A0+, )t

3,qe(ne = Tax *
](61 2:2 k3) EklEkQEkg {Ukl ng}

21

In 1), x5 % ’qe(ne)) are the quasi-equilibrium and nonequilib-

rium contrlbutlons to effective third-order nonlinear susceptibil-
(3,) (3,q¢) (3,ne) .

eS8 X7 ok = Xioykoka T Xiy ko ks and the subscript env means

the spatially slow envelope, with wavelength-scale nonunifor-

mities averaged out. Then, the corresponding terms in (20) may

be rewritten as

{Uk*(Pqe +Pne)efikath}

slow

=dr Z Xzf;c?kgﬁklﬁkzﬁl Oky 4o —ks (22)
k1,k2,k3
Here,
X]S?]’)kag = Uk1+k2—k3* (Xl(c?:)kgkg {Ukl U;cka}env Ukz) (23)

The rate equations (20) with the nonlinear terms in the form
of (22) are formally similar to the classical equations derived by
Lamb [30] for gas and solid-state lasers and, later, empirically
introduced for simplified modeling of the regime known as
frequency-modulation locking in homogeneously pumped
semiconductor lasers [31], [32]. In a detailed self-consistent
model of a multimode or mode-locked laser, however, equations
in such a form would present some difficulties. This is because
of the task of parameterizing the third-order permittivities
X,(j)kQ K, (23) for all the values of the three indexes (in [31],
[32], empirical constants were used for these values). Even if
the nonlinearity coefficients are calculated microscopically,
the right-hand side of (23) contains cumbersome double sum-
mation. The problem is, however, greatly simplified if we use
the moderate dispersion condition which involves retaining the
dispersion (mode number dependence) only of the quasi-linear
properties (such as the mode eigenvalues (2, = (2} — i~y;) and
neglecting dispersion of nonlinearities. This is a reasonable
assumption since both the nonlinearity and the dispersion are
treated as small corrections and their joint effect is, therefore, a
correction of the next order. To make full use of the moderate
dispersion approximation, we need to validate it, not only for
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the active medium properties, but also for those of the laser
cavity. Namely, we need to ensure that the spatially averaged
product of two modes depends only on the frequency interval
between the modes but not on their absolute spectral positions

{UkUI:er}onv =Zn=E_m # f(k) (24)

This is equivalent to neglecting the spectral (or mode number)
dependence of the spatially slow envelope of a mode profile
{Uk }eny- For an idealized closed cavity, with Uy, defined as
standing waves, the relation (24) holds universally and exactly.
In a realistic cavity, with mode eigenfunctions defined by (14),
this relation is only approximate. Still, for simple Fabry—Perot
cavities, (24) follows directly from the condition of moderate
material dispersion. With more complex, frequency-selective,
resonators, such as DBR or compound cavities, (24) is less ob-
vious and may, in general, be inaccurate. However, in such fre-
quency-selective cavities, the modes that are selected for laser
operation (for example, modes within the Bragg stopband in a
DBR laser) by definition have close net gains 7y, which also
implies a similar spatial structure (see Appendix). Modes that
have considerably different spatial profiles (such as the modes
outside the Bragg stopband in a DBR laser) experience a lower
net gain and are, therefore, not important in the lasing spectrum.
Therefore, with some caution, we may extend the use of (24) to
coupled-cavity and DBR lasers.

With these reservations, the quasi-equilibrium polarization
P, may be derived from the rate equation for the carrier density
N. With F in the “square root of photon density” units

ON(z,t) J N 02N

LN E*GE)+ DS (2
ot ed 7n(N) voRe(E"9E) + 022 (25)

Assuming that the only role of carrier diffusion [the last term
in (25)] is to smooth out wavelength-scale variations of NV, and
using the moderate-dispersion and weak-nonlinearity approxi-
mations, we may split this equation into separate relations for
slow and fast components of N(z,t). For the slow component
No(z,t), the result is a distributed rate equation

dN()(Z,t> J NO
—r — — ———— —0,5(

At T ed 7N (No) (26)

Z ngk

k=—o00

For the (small) fast components, collecting the resonant terms
gives

AN, (z,t
# +imAQN,
N, )
~ = E‘ . —sz(AQ—AQo)dt.
TS 'Ugg Z k4+m€

k
27

Here, J is the pumping current density, 7x (V) is the carrier
lifetime, and the effective recombination time 7 (z, t) is the in-
verse total recombination rate, including both the nonstimulated

recombination described by 7 (N) and the stimulated recom-
bination due to lasing

Z ngk> . (28)

1 o d Ny
m(z,t)  dNy \ 75(No) it

Noting that the amplitudes N,,(z,t) are slow variables, and
making use of (2), we can neglect time derivatives in (27),
yielding

Nm(z,t)eimf(AQ—AQO)dt

R g9 Ep

TS ~ =
" N"EuEram 29
1+z‘m72m2; Rk (29

The effective permutation in the dielectric permittivity caused
by this small [due to (7)] variation of carrier density has a com-
plex amplitude of A, = (en/4nw) - (0g/ON)(i — a)N,,. Sub-
stituting this into (21)—(23), we can obtain an expression for the
quasi-equilibrium part of the small-signal third-order dielectric
permittivity

3,9) _ & 39(. ) )

Xiakoks = =09 o o =T~ fyreaa CO

where c and n are the velocity of light and the effective refractive
index, respectively, and k3 # kp. In the moderate dispersion
approximation, x k::’ ,3? k., does not depend on the middle index k.
Since the nonequilibrium components of the fast polarization,
like the quasi-equilibrium terms, have origin in pulsations of
population inversion, their contribution to x(*) may be written
in the same functional form

B c2n 1€
1-— L(kl - k3)Tn1A.Q

4w

(3,me) _
Xkykoks —

€1y

Here, the complex value ¢ has the dimension of 1/ E? =
cm?, and the physical meaning of a characteristic coefficient of
mode interaction due to mode beating (four-wave mixing non-
linearity coefficient). 7, is the characteristic type of relaxation
for the dominant type of nonlinearity (e.g., carrier thermaliza-
tion time for spectral hole burning or cooling time for dynamic
carrier heating; both typically have subpicosecond values). If
more than one type of nonlinearities is significant for the laser
material studied, the nonequilibrium term can be generalized
in the form of a sum of corresponding terms. We note that the
functional form (31) for the fast optical nonlinearities implies,
apart from the moderate dispersion, also adiabatic exclusion of
polarization, or neglect of any electron-hole coherence. This is
valid when 7,1 > T3, where T is the characteristic dephasing
time for the electron-hole transitions (typically in semiconduc-
tors under lasing conditions, 75 ~ 50-100 fs). For the case
of carrier heating nonlinearities, this is a good approximation
as in this case m; ~ 300-700 fs. For spectral hole burning
and related nonlinearities (7,1 ~ 100 fs), the adiabatic exclu-
sion of polarization is more tenuous but is still known to be a
reasonable approximation [33]. The nonlinearity coefficient €
and the response time 7,;) may be calculated microscopically,
as can gain/absorption coefficients and refractive index varia-
tion, but this is beyond the scope of this paper. Note that (31),
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unlike (30), holds also for ky = k3, when it describes gain/ab-
sorption cross-saturation if ky = k3 # ko or self-saturation if
ki = ks = ko.

Substituting (30) and (31) into (20), we obtain the mode cou-
pling equations in the form [13], [21]

+ZG

d ~

Bt~ (ﬁk - wg) Fkam(t) (32)

Here, the real parameter
wp = kAQ + Q. (33)

is the recalibrated “nominal” frequency assigned to the mode,
and the complex values

o ( D% m)

o(1+ i) ((?N) in> c
1-— 'L’I’TLAQTE + 1-— imAQTnl

Vg
2L

\N‘Ih

Gp =

+ mod(2)(1 + i0mod) } (34)
are the mode coupling coefficients (m # 0, note that in the no-
tations used, each GG,,, is associated with N_,, rather than IV,,,).
The first term in the figure braces describes the coupling via
nonlinearity, and the second term, via external modulation. In
this term, a,,04(z, t) is the amplitude of the external modulation
of optical absorption (we assume that electrooptical modula-
tion is used as this is much more efficient than current modu-
lation [1]), and the linewidth enhancement factor a,,q defines
the chirp of the modulator. In deriving (34), we have used the
moderate dispersion condition to approximate

1 L
UrtUk+mr + UprUg4m,1 =—cos <vg(9k+m — ) <Z + 5))

L
1 mm L
(7 (- 3)
The mode coupling equation in the form of (32) contains
only single summation in the right-hand side, as opposed
to the double summation in (20) and (22). In a practical
calculation, the integration over z in (34) has to be performed
by subdividing the length of the laser cavity into sections in
which the parameters such as the carrier density Ny (and, by
implication, the light intensity profile =) can be treated as
constant values, averaged over the length of the section. Here,
we shall use the simplest approximation of only two sections
coinciding (or nearly coinciding, to allow for the imperfect
electrical isolation) with the two physically distinct regions in
the cavity—the amplifier and the saturable absorber—though
the model can be readily generalized with sections further

(35)

subdivided to improve the accuracy. Space averaging gives
for the coupling coefficients

(Ee)

' f(“)a ’Ug(l-i-’iaA)'AA-TEa €A
" 1—imAQTs, l—z'mAQTr(l‘ll)
—¢Wg vg(1+iag)-AgTs, €a
e 1—imALTe, l—imAQ'rT(fl])
+ Ady (1+iameq )EOD. (36)

Here, we have introduced the overlap factors

¢9 = /dzEm(z) cos (% (z + g)) (37a)
(9)
(@) _ mm L
¢lo) = /dz:m(z) cos( 7|2+ 3 (37b)
(@)
o = [ @uDn(2)cos (% (z ¥ 5)) (38)

mod

with the integration in (37) being over the length of the gain
or saturable absorber section and in (38) over the length of the
modulator section [for some hybridly mode-locked lasers, the
absorber doubles as the modulator, in which case, the limits
of integration in (38) are the same as in (37b)]. The function
D,,,(z) is the dimensionless spatial profile of the external mod-
ulation at or around the frequency of mA{2 and, finally, Aay,
stands for the absorption modulation amplitude @meq(m)(2) =
AayD(2). In the special case of m = 0, the parameter G de-
scribes, not mode coupling, but self- and cross-saturation of gain
and saturable absorption

Go = v, - {¢"aca — &"gec | (39)

where S = Ziuz/f M2 E2 is the total light intensity and the
moderate dispersion approximation has been used to apply the
same nonlinearity parameters for self- and cross-saturation. For
the average (slow) carrier densities in the gain (N,) and sat-
urable absorber (N, sections, space averaging of (26) yields
rate equations in the form

N— — — g E? (40
At ed  1,(N,) x L kZMgk P 40

(41)

7
E akE,%.
k=—M
2

These are the multimode equivalent of modified rate equa-
tions used by one of the authors [34] for modeling self-pulsating
tandem lasers. The values of the carrier densities N, and N,
are used to calculate space-averaged total recombination rates
1/7s, and 1/7s, in (34).
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E. Equations for Numerical Modeling

The equations (32), (40), and (41) form the basis for numer-
ical analysis. In the numerical procedure, each of the complex
equations (32) is represented as a system of two real equations
for the mode amplitude

d Ug ne —ip -
EEk(t) = ?ggk tEk(t) + Re |e "#* %: Gm(t) -Ek+m(t)]
(42)
and phase
d 7 n
acpk(t) = wj, —wy (43)

Here, the real variable

) 1 ~
wy, = 2}, + Im T Z Gm(t) 'Ek+m(t)] (44)

k m

has the meaning of an instantaneous mode frequency (in the
steady state, the right-hand side of (43) vanishes so that the
instantaneous frequency equals the nominal frequency). Using
the moderate dispersion approximation, we can express the net
modal gain in (42) in a form similar to standard rate equations

G = Ty~ o) — o~ s+ b0s) 49

where aqg is the cavity loss for the reference mode, f, ., are
the volume (length) fractions of the gain and absorber, and the
corrections 6gx = fy(90 — gr) + fa(ar — ap) <€ g,a and
dack = acx — a0 <K aco describe the mode selective properties
(dispersion) of the active medium and the cavity, respectively.
Likewise, in (44)

Q= kAQo + 6025, 62, < AL, (46)

Finally, we remove the ambiguity in the definition of mode
phases and frequencies by specifying the way of calculating the
instantaneous mode interval AQ(t) and the reference mode shift
Qc(t). The former, in the case of purely passive ML, is estimated
as

wi—wi
Zk>l EvEr ==
Zk>l ELEy

In the case of active or hybrid ML, we use Af2 = Af2,,q =
const in the integration of (32), though the instantaneous value
A (t) is also calculated using (47) and used to characterize
the ML transient. The reference mode shift is calculated as

AQ = AQ =

(47)

Dk Ei (w;r - kAQ)
We =
e B}

(48)

in both cases.

(a)

—1 Po©
! 1 oap (@)

Fig. 1. Laser constructions analyzed in the paper: (a) tandem passively
mode-locked laser; (b) colliding-pulse mode-locked laser; (c) single-absorber
ACPM laser; and (d) hybridly mode-locked DBR laser. Light filling: gain
sections, darker filling-absorber/modulator sections, no filling—passive
sections.

III. APPLICATION TO DIFFERENT CONSTRUCTIONS
AND REGIMES

A. Tandem-Geometry Fabry—Perot Passively Mode-Locked
Lasers

In the case of Fabry—Perot lasers [Fig. 1(a)] with a cavity of
the length L and length fractions f, ., = L, /L occupied by the
gain and absorber sections, respectively, the intermodal interval
is estimated simply as AQy = v, /2L. The instantaneous modal
profiles can be calculated analytically (see Appendix), and the
exact frequencies and losses of the uncoupled modes in (45) and
(46) are given by the usual expressions

1
50 = EkQ%AQE +vg(fgg9 — faaa)  (49)

and

1 1
Ae) = — In ( > + Qint- (50)
L TRTL

The mode selectivity is provided only by the dispersion of the
net gain g = f,9 — f.a

27
San =0  Sgp = kQ%Aﬂg. (51)

d

The relations above hold regardless of the position of the ab-
sorber in the cavity; the SA geometry only enters the rate equa-
tions (42) and (43) via the overlap factors (37a) and (37b) in
the coupling coefficients G,,, . The specific expressions for these
factors used in the calculations below are shown in the Ap-
pendix. In the simplest case of a tandem laser with a single short
(fa < f,) absorber at one of the facets, these expressions are
reasonably close to 55,?) ~ 0.5 fg, ,(lm) ~ fo,m==11,2,3...
A typical simulated turn-on transient in a tandem
mode-locked laser (with gain and SA sections 40 and
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TABLE 1
MAIN PARAMETERS USED IN THE CALCULATIONS
notation meaning value units
r Confinement factor 0.03
a; Internal (dissipative) loss 2.5 1/cm
ne Group refractive index 3.45
Ny Transparency carrier density (gain) 1.2:10® | cm?
2.5-10"
(absorption)
A, Gain cross-section, gain 7.107¢ cm’
absorption 15-10"¢
a, Linewidth enhancement factor, gain 2
o Linewidth enhancement factor, SA
FP laser 0.5
DBR 1
€, Gain compression coefficient 41077 cm’
€ Absorption compression coefficient, cm’
FP and DBR 7-10™"
CPM 15-10"7
ACPM 181077
7 Nonradiative recombination time 8 ps
(absorber)
Bimolecular recombination coefficient | 2.5.10™ | cm%s
B
Tor Nonradiative recombination time 10 ns
(gain)
AR Gain spectrum width parameter 5-10" 1/s

500 pm, respectively, the other main parameters are summa-
rized in Table I) is shown in Fig. 2. Note that intensities of
individual modes see a relatively slow oscillatory relaxation,
due to supermode competition, after the faster electron-photon
relaxation oscillations of the total intensity has settled down;
the same supermode relaxation transient is experienced by
phases and, therefore, by the instantaneous intermodal interval.
The resulting steady-state spectrum [Fig. 3(a)] shows both a
noticeable asymmetry, with a steeper red edge, and a significant
red shift—both may be explained by the self-phase modulation,
mainly in the gain section of the laser. For comparison, a dashed
line shows the spectral envelope for the same laser calculated
using a distributed time-domain model [1] (produced by Fourier
transforming a single ML pulse). A good agreement between
the two models can be achieved, though the gain bandwidth
in the time-domain simulation needed to be taken somewhat
smaller than that of the mode decomposition approach. The
model presented here allows for calculations about an order of
magnitude faster than our version of the time-domain model.
Recombining the amplitudes and phases allows the temporal
pulse profile to be calculated [Fig. 3(b)]. The pulse shape and
duration obtained by the two models are in good agreement.

B. Colliding-Pulse and Asymmetric-Colliding-Pulse
Passive ML

Passive colliding-pulse ML (CPM) is a well-known method
for achieving stable, short pulses by placing a single saturable
absorber in the middle of the Fabry—Perot cavity [Fig. 1(b)],
resulting in a doubling of the repetition rate compared to the
tandem construction. When applying our model to a CPM
laser, the relations (49)—(51) still hold, but the expressions
for overlap factors now give approximately fé‘;,z ~ fa,

é’;{fl ~ 0. As a result, modes with odd numbers die out
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Fig.2. Simulated turn-on transient in a tandem mode-locked laser with a single
saturable absorber as in Fig. 1(a). Top curve (solid): total intensity; middle curve
(dotted): instantaneous intermodal interval; bottom curves (dotted): intensities
of individual modes (top to bottom): —3, —2, —1.
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Fig. 3. (a) Steady state spectrum and (b) temporal pulse profile for a laser
presented in the previous figure. Solid: the present model. Dashed: fully
time-domain simulation. Scattered points in Fig. 2(a) are mode phases.

during the initial relaxation oscillations immediately following
switch-on, leaving only modes with even numbers in the
resulting steady-state spectrum [Fig. 4(a)]. In the time domain,
this corresponds [Fig. 4(b)] to a pulse train with a repetition
rate of 2F (F = AQ/2x), with subpicosecond durations and
modest chirp, in agreement with the experimental trends. We
note, though, that in simulations with different parameters, we
observed significant competition between the “even” and “odd”
CPM supermodes, and even situations when the repetition
frequency doubling was achieved without the doubling of the
intermodal interval, purely due to there being a phase shift of
~ m between even and odd modes. As has been shown by the
time-domain simulations [10], transient gratings not included
in the current version of our model can further stabilize the
dominant supermode.
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Fig. 4. (a) Steady-state spectrum of a CPM laser 430 pm long, with the
saturable absorber 30 xm long. (b) fragment of the corresponding pulse train
(1.5 round-trips of the fundamental laser cavity).
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Fig. 5. Mode overlap factors £(2) for CPM (circles) and ACPM (triangles)
lasers. Dotted lines are purely to guide the eye, arrows indicate the position of
the lasing harmonic. In both cases, the laser is 430 pm long, with the saturable
absorber 30 ym long positioned at the middle (CPM) or at 2/5 of length
(ACPM).

An important generalization of the CPM principle involves
positioning either one short absorber section [asymmetric
CPM (ACPM)] or several absorbers [multiple CPM (MCPM)]
within the laser cavity at a distance of L/M (M = 3,4...)
from a facet and/or from each other, leading under properly
adjusted bias conditions to ML with a repetition rate of M F'.
The physics of MCPM operation was explained [13] using
an earlier version of the present model (without fully solving
the rate equations). Since then, ML at record repetition rates
of 500-800 GHz has been achieved using a modification of
ACPM with a single SA at a distance My /M - L (e.g., 2/5 or
5/12) from the facet. Here, we model a laser with a geometry
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relative optical frequency, GHz
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-1000
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N
Qo
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time, ps (-50 ns)
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Fig. 6. (a) ML spectrum and (b) fragment of the corresponding pulse train (1.5
round-trips of the fundamental laser cavity) for an ACPM laser, geometry as in
Fig. 6.

of this type [F' =100 GHz, M; = 2, M = 5, Fig. 1(c)]. As
in all Fabry—Perot constructions, the “cold-cavity” mode fre-
quencies and losses are given by (49)—(51), with the harmonic
operation ensured by the overlap factors 5,(7? ). The values of
these parameters are shown in Fig. 5. For comparison, the
values for the CPM laser treated in the previous example are
also shown. In the case of ACPM laser, as in the case of MCPM
lasers studied in [13] and, unlike the case with simple CPM, the
coefficients 51(# ) are significant even for |m| < M. However,
with strong enough mode coupling, numerical simulations of
the rate equations still yield a steady-state spectrum with the
nonharmonic “satellite” modes suppressed by about 30 dB
[Fig. 6(a)], which corresponds in the time domain to a stream
of pulses with a repetition rate of M F' (in our case, 500 GHz)
with little visible subharmonic modulation [Fig. 6(b)].

The alternative means of ML at ultrahigh rates, using
frequency-selective compound cavities, may also be analyzed
using this model and have been reported elsewhere [25], [35].

C. DBR Lasers

Mode-locked DBR lasers are attracting considerable atten-
tion as optical sources for a number of applications (see [1]
for an overview). The optical spectrum in ML DBR lasers is
naturally limited by the Bragg stopband and includes only a
small number of modes, which makes our model particularly
well suited for treating these lasers—after appropriate modifi-
cations. Consider for example a commonly used construction
shown in Fig. 1(d) and consisting of a SA section with a length
L, a gain section with a length L, an optically passive section
with alength L, (including the phase adjustment section if any),
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and the DBR section with an optical frequency dependent com-
plex reflectance rg(w) = |rp|exp(i¢r). The effective cavity
length of such a laser is

Leﬂ = La, + Lg + Lp + Lreﬂ (52)

Here, the last term is the effective reflection length in the

Bragg mirror [36]
Vg aqu
Lreﬂ - 2 Ow .

In the simplest case of a lossless DBR of a large length
Lpragg > 1/K, K = K, = Kj, being the coupling co-
efficient, |7p(waragg)] = |7Bo| ~ tanh(K Lpage) at the
Bragg wavelength wprage (Which is taken to approximately
coincide with the reference frequency) and L, =~ 1/(2K); for
more general expressions see, for example, [36]. The effective
cold-cavity round-trip frequency is now AQy = v,/2Lg, and
the expressions for the overlap coefficients are also modified,
with L in (37a), (37b), and (38) and in the formulas in the
Appendix being substituted by Lg-.

The effective net modal losses and frequencies are now calcu-
lated by solving the characteristic equation for the laser cavity
[36] self-consistently, so that

(o)
—n| ——— Gin
L |’I"B()|7‘L ¢

and both the dispersion of modal frequency and that of loss
(the cavity selectivity) are dominated by the effects of the DBR
cavity

(53)

(54)

aco =

AL

082, = o (¢B(wr) — PBO) (55)
1 TBo

bag =—1 O7y..

tek = 7 In ro(@n) > gk (56)

Here, we shall consider a laser similar to those used for
communications-related applications, i.e., designed for oper-
ation at approximately 40 GHz. We consider a structure as in
Fig. 1(d), with the SA, gain, and passive sections 80, 600, and
340-um long, respectively, followed by a DBR section with
the coupling coefficient (K = 80 1/cm) chosen to select about
five longitudinal modes. For the purely passive ML in a DBR
laser, the model does indeed predict a grating-bandwidth limited
spectrum with typically four to five modes, corresponding to
a spectral width of several picoseconds (Fig. 7, dashed curve).
Of particular interest for practical purposes, however, is the
case of hybrid ML with a modulation applied to the absorber
contact of the laser, described in the following section.

D. Hybrid ML, Locking Ranges, and Mechanisms

Here, as in [12], we assume that the absorber modulation is
proportional to the voltage modulation and, therefore, approx-
imately sinusoidal. Then, in the expressions (36) for mode in-
teraction coefficients Aat; > 0 but Aatss . = 0. Unless
specified otherwise, this section considers a DBR laser with pa-
rameters and approximations as discussed in the previous sec-
tion. For such a laser, as seen in Fig. 7, the pulsewidth decreases
with absorption modulation amplitude, as expected. This is ac-
companied by a slight increase in the grating-bandwidth-limited
spectrum width (this is difficult to accurately quantify though,
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Fig. 7. (a) ML pulse shapes emitted by a passively or hybridly mode-locked
DBR laser and (b) the corresponding spectra. Dashed lines/empty symbols:
passive ML. Solid lines/filled symbols: pronounced hybrid ML (@ moa/@. =
0.024 at F.oa = 39.82 GHz).

5 001

% Wi
é 1E-34 'j
= ]
g i
13
1E-4 . '
39.8 39.9 400 40.1

modulation frequency, GHz

Fig. 8. Locking range of hybrid ML. (1): Fabry—Perot laser, full 35-mode
spectrum simulated; (2): same laser with only 5 modes taken into account;
(3) DBR laser as in Fig. 7.

due to only a few modes’ being present in the spectrum); the
time-bandwidth product remains modest (of the order of 0.5)
implying modest chirp at all operating conditions.

The efficiency of our model when applied to slow transients,
particularly in a laser with only a few modes such as a hybridly
mode-locked DBR laser, allows us to investigate the locking
range of hybrid ML more efficiently than it was possible
with a fully time-domain model [12]. To do so, we study the
time evolution of the instantaneous modal interval A2; and
consider the laser operation locked if the value of AQ;(¢)
settles at AQ; = AQ,q and unlocked otherwise. The range
of parameters (modulation amplitude vs. frequency detuning
between modulation and passive ML frequency) in which
the locking is observed is plotted in Fig. 8 for different laser
constructions. As in the experimental observations, the locking
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range is asymmetric, slowing the laser down being easier than
speeding up. For realistically achievable modulation ampli-
tudes, the frequency range for locking is of the order of several
per cent of the repetition frequency, also in agreement with
the experiments. At very high modulation amplitudes (~0.1
on the scale of Fig. 8), the condition AQ; = A€Q,,,q holds,
but self-pulsation gradually sets in, which may contribute to
the increase of noise under large-signal modulation observed
under some experiments.

The modal dynamics approach allows us to identify different
factors that affect the locking range. To start with, we compare
the locking properties of a hybridly mode-locked DBR laser
with those of a Fabry—Perot laser of approximately the same
effective (in the case of a Fabry—Perot laser, physical) length
and with the same lengths of the amplifier and absorber sec-
tions. Such a laser, like the DBR laser, can be locked to an ex-
ternal signal (Fig. 8, dashed curve 1), but in a frequency range
much narrower than that of a DBR laser. Unlike the case of
a DBR laser, hybrid mode-locked operation of a Fabry—Perot
laser is accompanied by a strong shift of the lasing spectrum
compared to the passive ML, approximately proportional to the
detuning between the hybrid and passive ML repetition rate.
This shift was also registered in our time-domain simulations
[12]. With the large group velocity dispersion (GVD) values
used in [12], the magnitude of the shift was consistent with the
spectrum peak moving so that the hybrid ML rate would match
the frequency-dependent intermodal interval. The GVD values
used here, however, are too small to explain the shift entirely
by this mechanism. We conclude that the nonlinear interaction
between pulse chirp and the shaping effect of the modulation
must also play a significant role. Still, we find that the disper-
sive properties of the resonator do play a part in determining
the locking range. To prove this, we use the unique possibil-
ities of our model to simulate a hypothetical structure which,
like a DBR laser, has a restricted spectrum, but with little or no
intermodal interval dispersion. It is, essentially, a Fabry—Perot
cavity with the number of modes artificially restricted to five in
our case. In this case (dash-dotted curve 2), the locking range
is broadened considerably when compared to the Fabry—Perot
laser, but still narrower than that of the true DBR (solid curve
3). We conclude, therefore, that the broad locking range of the
DBR laser compared to the FP cavity is due to a combination
of the restricted spectrum (lowering the ML “oscillator quality”
and thus easing the locking) and the grating-caused dispersion
of the intermodal interval. The latter is most important for rep-
etition rates lower than that of the free-running passive ML—in
this case, the spectral broadening as in Fig. 7 involves excitation
of outer modes of the spectrum which have smaller intermodal
intervals due to dispersion. This brings the instantaneous inter-
modal interval closer to the modulation frequency and thus fa-
cilitates locking.

Fig. 9 gives some examples of the dynamics of the instanta-
neous power S and the instantaneous modal interval A€2; in a
DBR laser after the modulation is applied. In the case of modula-
tion amplitude high enough to achieve locking (the solid curve 1
in Fig. 9), the transient consists of relaxation oscillations (much
more pronounced in the intensity variation than in that of the in-
termodal interval), accompanied or followed by a slower tran-
sient, several nanoseconds long (the time constant identified in
the previous studies as the supermode relaxation time), during
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Fig. 9. (a) Transient behavior of the instantaneous power and (b) intermodal
interval in a mode-locked DBR laser under external periodical excitation.
External modulation at Frnoq = 39.82 GHz switched on at ¢ = 85 ns.
Successful locking: solid curve (1): @moa/a. = 0.011; unsuccessful
locking: dashed curve (2): amod/aC = 0.003 and dash-dotted curve (3):
Amoafa. = 0.0095. Dotted lines show the free-running repetition frequency
(39.935 GHz) and the modulation frequency.

which the intensity and period relax to their steady-state values,
in agreement with earlier time-domain simulations. In the oppo-
site case of very small modulation amplitude (the dashed curve
2), we observe an almost sinusoidal variation of both intensity
and repetition period at the frequency (nearly) equal to the dif-
ference of repetition frequencies of free-running (passive) and
active ML, with the average repetition period very close to that
of passive ML. This is the frequency mixing regime observed in
our previous time-domain simulations [12]. In the intermediate
case of modulation strong enough to cause significant pulling
of the repetition frequency toward the modulation frequency
but still too weak to achieve locking, the laser approaches the
locked state but never reaches it, with the near-synchronization
being periodically lost (the dash-dotted curve 3 in Fig. 9). A
very similar behavior was, again, seen in our time-domain sim-
ulations [12] and called quasi-locking instability. The closer the
operating point is to locking, the longer are the quasi-locked
periods of operation. Mathematically, such behavior of a dy-
namic system is consistent with a saddle-node bifurcation on
a periodic orbit [37]; the application of the dynamic modal ap-
proach to more detailed analysis of the (in)stability properties
of mode-locked lasers is reserved for future work.

IV. SUMMARY AND CONCLUSION

In summary, we have presented a modal decomposition based
model applicable to a number of multimode and mode-locked
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laser structures. The main approximations essential for this ap-
proach have been identified as weak modulation/nonlinearity
and moderate dispersion. Whilst these approximations, particu-
larly the former, do limit the applicability of the approach (e.g.,
it becomes problematic for high-power, long cavity lasers), we
believe the model presented here can accurately describe a large
number of practically relevant laser constructions and experi-
mental situations. We believe the results obtained on harmonic
ML (e.g., ACPM considered here and compound-cavity lasers
treated in [25] and [35]) and on passive and hybrid mode-locked
DBR lasers show that modal analysis is, at the very least, a very
useful supplement for time-domain simulations and in some
cases may substitute these completely. We believe our approach
offers a unique insight into some of the factors responsible for
laser properties, allowing us, for example, to isolate the role of
reflection bandwidth and dispersion in determining the locking
properties of a hybridly mode-locked DBR laser. Finally, the
modal dynamics approach can offer an improvement of 1-2 or-
ders of magnitude in calculation speed over time-domain simu-
lations, particularly for lasers with a restricted spectrum.

Further developments of the model may include the study of
noise properties and of optical injection, which is relevant to
WDM applications. Another attractive further application of the
modal decomposition approach would be a systematic study of
instabilities in mode-locked lasers. These present a challenge for
both experimental studies and time-domain theories but can be
relatively straightforwardly studied using the present model by
applying the well-established mathematical apparatus such as
stability criteria for steady-state solutions of systems of ordinary
differential equations.

APPENDIX
WAVE FUNCTIONS AND OVERLAP COEFFICIENTS

In Fabry—Perot or DBR lasers, which have no active gratings
and no internal reflectors, the solution of (14) with (12) and (13)
gives wave functions in all the active (gain and SA) sections in
the simple form

PL
N XP

—i [ qi(?
-3

z

~exp | i [ qu(z)d7
L
-3

Here, the complex propagation factors gy (z) within the am-
plifier sections are
Qk Anw gk

qr = + + 10—
Vg Vg 2

with An describing the carrier dependent refractive index; in
the SA sections, gi is substituted by (—ay). The normaliza-
tion factor NV is chosen to satisfy (16). Then, we split the length
of the laser into segments over which the properties of the ac-
tive layer are assumed constant as discussed in the main text,
with L; and z; the length and the left coordinate of the /th sec-
tion (starting with z; = —L/2). Using (46) and the moderate
dispersion approximation, we can approximate within each /th
section: qx; = qj; + iqy, ~ (mk/L) + i(v/2), with v, = g,

Y1 = —a in the gain and SA sections respectively. Then, the
integrals in (37a) and (37b) can be evaluated to calculate the
overlap factors for Fabry—Perot lasers

fy(;g) = Zglm 57(;11) = €1m|l€a
leg
where the overlaps over individual sections are evaluated as

1—1

€1_1 H10—1H 11111
m = 375 + = -
N2L Yio b1 PL 1 Hpo
-1 1
Hy, -1 1 1
_ H. m N
Sl 0§ R |
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where we have, for brevity, denoted Ji,, = v + i((27m)/L);
Hyy,, = exp(YimLi). The normalization factor N is then

1 Hp—1
N=— —
L(%:l Yio

-1

l
H%M%H

p=1 L

The expressions above are similar to those used in [13], ex-
cept that, in the present paper, we have only considered lasers
with one saturable absorber section (for the MCPM lasers that
have several SAs, the summation over [ should apply to the SA
region as well, as in [13]). For DBR lasers, the length L is sub-
stituted by the effective length L.g (52).

ACKNOWLEDGMENT

One of the authors, E. A. Avrutin, wishes to thank E. L.
Portnoi and K. A. Shore for useful discussions at various stages
of the work.

REFERENCES

[1] E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, ‘“Monolithic and
multi-GHz mode locked semiconductor lasers: experiment, modeling
and applications,” Proc. IEE Optoelectron., vol. 147, no. 4, pp.
251-278, 2000.

[2] R. G. M. P. Koumans and R. Van Roijen, “Theory for passive mode-
locking in semiconductor laser structures including the effects of self-
phase modulation, dispersion and pulse collisions,” IEEE J. Quantum
Electron., vol. 32, pp. 1782-1790, Mar. 1996.

[3] J. A. Leegwater, “Theory of mode-locked semiconductor lasers,” IEEE
J. Select. Topics Quantum Electron., vol. 32, pp. 1782—1790, Oct. 1996.

[4] S. Arahira and Y. Ogawa, “Repetition-frequency tuning of monolithic
passively mode-locked semiconductor lasers with integrated extended
cavities,” IEEE J. Quantum Electron., vol. 33, pp. 255-265, Feb. 1997.

[5] V. B. Khalfin, J. M. Arnold, and J. H. Marsh, “A theoretical model of
synchronization of a mode-locked laser with an external pulse stream,”
IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 523-527, June
1995.

[6] J.L.A.Dubbeldam, J. A. Leegwater, and D. Lenstra, “Theory of mode-
locked semiconductor lasers with finite absorber relaxation times,” Appl.
Phys. Lett., vol. 70, no. 15, pp. 1938-1940, 1997.

[7]1 P. A. Morton, R. J. Helkey, and J. E. Bowers, “Dynamic detuning in ac-
tively mode-locked semiconductor lasers,” IEEE J. Quantum Electron.,
vol. 25, pp. 2621-2633, Dec. 1989.

[8] M. Schell, A. G. Weber, E. Scholl, and D. Bimberg, “Fundamental limits
of sub-ps pulse generation by active mode locking of semiconductor
lasers: The spectral gain width and the facet reflectivities,” IEEE J.
Quantum Electron., vol. 27, pp. 1661-1668, June 1991.

[9] W. Yang and A. Gopinath, “Study of passive mode locking of semicon-

ductor lasers using time-domain modeling,” Appl. Phys. Lett., vol. 63,

pp. 2717-2719, 1993.

L. M. Zhang and J. E. Carroll, “Dynamics response of colliding-pulse

mode-locked quantum-well lasers,” IEEE J. Quantum Electron., vol. 31,

pp. 240-242, Feb. 1995.

[10]



856

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 3, MAY 2003

M. Schell, M. Tsuchiya, and T. Kamiya, “Chirp and stability of mode-
locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 32, pp.
1180-1190, July 1996.

E. A. Avrutin, J. M. Arnold, and J. H. Marsh, “Analysis of dynamics of
monolithic passively mode-locked laser diodes under external periodic
excitation,” Proc. IEE Pt. J., vol. 143, pp. 81-88, 1996.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts,
“Monolithic multiple colliding pulse mode locked quantum well lasers:
experiment and theory,” IEEE J. Select. Topics Quantum Electron., vol.
1, pp. 539-552, June 1995.

H. Haus, “A theory of forced mode-locking,” IEEE J. Quantum Elec-
tron., vol. QE-11, pp. 323-330, July 1975.

K. Y. Lau, “Efficient narrow-band direct modulation of semiconductor
lasers at millimeter wave frequencies of 100 GHz and beyond,” Appl.
Phys. Lett., vol. 52, pp. 2214-2216, 1988.

, “Narrow-band modulation of semiconductor lasers at millimeter
wave frequencies (>100 GHz) by mode locking,” IEEE J. Quantum
Electron., vol. 26, pp. 250-261, Feb. 1990.

J. Paslaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency
mode locking of semiconductor lasers,” Appl. Phys. Lett., vol. 59, pp.
7-9, 1991.

K. Y. Lau and J. Paslaski, “Condition for short pulse generation in
ultrahigh frequency mode locking of semiconductor lasers,” Photon.
Technol. Lett., vol. 3, pp. 974-976, 1991.

O. Solgaard, M.-H. Kiang, and K. Y. Lau, “Pulse buildup in passively
mode-locked monolithic quantum-well semiconductor lasers,” Appl.
Phys. Lett., vol. 63, pp. 2021-2023, 1993.

I. Kim and K.-Y. Lau, “Frequency and timing stability of mode-locked
semiconductor-lasers—passive and active-mode locking up to mil-
limeter-wave frequencies,” IEEE J. Quantum Electron., vol. 29, pp.
1081-1090, Apr. 1993.

E. A. Avrutin, J. M. Arnold, and J. H. Marsh, “Analysis of modal dy-
namics of monolithic mode-locked semiconductor lasers,” presented at
the OSA Annu. Meeting, Baltimore, MD, Oct. 5-12, 1998.

R. A. Salvatore, S. Sanders, T. Schrans, and A. Yariv, “Supermodes
of high-repetition-rate passively mode-locked semiconductor lasers,”
IEEE J. Quantum Electron., vol. 32, pp. 941-952, Nov.-Dec. 1996.

M. Lecce and 1. Montrosset, “Analysis of integrated mode-locked semi-
conductor lasers: spectral domain approach,” Proc. IEE Optoelectron.,
vol. 148, pp. 266-272, 2001.

E. A. Avrutin, J. H. Marsh, J. M. Arnold, T. F. Krauss, H. Pottinger,
and R. M. De La Rue, “Analysis of harmonic (sub-)THz passive mode
locking in monolithic compound cavity Fabry—Perot and ring laser
diodes,” Proc. IEE Optoelectron., vol. 146, no. 1, pp. 55-61, 1999.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H.
Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of mono-
lithic compound-cavity laser diodes incorporating photonic-bandgap
reflectors,” IEEE J. Quantum Electron., vol. 38, pp. 1-11, Jan. 2002.
H. Wenzel, U. Bandelow, H.-J. Wunsche, and J. Rehberg, “Mechanisms
of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum
Electron, vol. 32, pp. 69-78, Jan. 1996.

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with
detuned Bragg reflectors,” IEEE J. Quantum Electron., vol. 34, pp.
2371-2379, Dec. 1998.

U. Bandelow, “Private Communication,” unpublished, 1996.

W. A. Hamel and J. P. Woerdman, “Nonorthogonality of the longitudinal
eigenmodes of a laser,” Phys. Rev. A, vol. 40, no. 5, pp. 2785-2787, 1989.
W. E. Lamb, “Theory of an optical maser,” Phys. Rev., vol. 134, pp.
A1429-A1450, 1963.

K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in
semiconductor-lasers,” Proc. IEE Optoelectron., vol. 138, no. 2, pp.
91-96, 1991.

W. M. Yee and K. A. Shore, “Multimode analysis of self locked FM
operation in laser-diodes,” IEE Proc. Optoelectron., vol. 140, no. 1, pp.
21-25, 1993.

A.Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave
mixing between short optical pulses in semiconductor laser amplifiers,”
IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1190-1207,
May-June 1997.

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-
pulsing laser diodes,” Proc. IEE J. Optoelectron., vol. 140, no. 1, pp.
16-20, 1993.

M. W. Street, E. A. Avrutin, D. Yanson, S. D. McDougall, I. G. Thayne, J.
H. Marsh, and J. S. Roberts, “Sub-THz passive harmonic mode-locking
effects in external reflector compound cavity laser diodes,” in Proc. 12th
LEOS Annu. Meeting, vol. 2, San Francisco, CA, Nov. 8-13, 1999, pp.
703-704.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated
Circuits. New York: Wiley, 1995, ch. 4.

B. Krauskopf, Private communication, 2002.

Eugene A. Avrutin (M’95) was born in St. Peters-
burg (then Leningrad), Russia, in 1963. He received
the M.Sc. degree with distinction from St. Petersburg
Technical University (then Leningrad Polytechnical
Institute), St. Petersburg, Russia, in 1986 and the
Ph.D. degree from A.F. loffe Physico-Technical
Institute, St. Petersburg, Russia, in 1994.

From 1986 to 1993, he was with the Integrated
Optics Laboratory, Ioffe Physico-Technical Institute,
working mainly on theory and modeling of spectral,
dynamic, and polarization properties of advanced
semiconductor lasers. From 1994 to 1999, he was with the Department of
Electrical and Electronic Engineering, University of Glasgow, U.K., where his
research centred on theoretical and numerical analysis of ultrafast diode lasers
and new materials for semiconductor optoelectronics. Since 2000, he has been
a member of the academic staff at the Department of Electronics, University of
York, York, U.K., where his interests are in theory, modeling, and design of
optoelectronic devices, and in advancement of photonic computer-aided design
techniques.

John M. Arnold received the B.Eng. in electronic
engineering and the Ph.D. degrees from the Univer-
sity of Sheffield, Sheffield, U.K., in 1968 and 1974.

He was a Postdoctoral Research Assistant with the
Department of Electronic and Electrical Engineering,
Queen Mary College, University of London, London,
U.K.,, from 1974 to 1978. In 1978, he was appointed
Lecturer in the Department of Electronic and Elec-
trical Engineering, University of Nottingham, Not-
tingham, U.K. In 1985, he was appointed Lecturer in
the Department of Electronics and Electrical Engi-
neering, University of Glasglow, Glasgow, U.K., where he has been a Professor
of Applied Electromagnetics since 1994. He was appointed Head of the De-
partment of Electronics and Electrical Engineering there in April 2003. His re-
search interests concentrate on mathematical methods in applications to optics
and electromagnetic wave propagation, particularly in nonlinear guided-wave
optics and semiconductor lasers.

He is a Fellow of the Institute of Physics. He is a Member of the URSI Com-
mission B and has served as the U.K. National Representative for URSI Com-
mission B from 1991 to 1996.

John H. Marsh (M’91-SM’91-F’00) received the
B.A. degree in engineering and electrical sciences
from the University of Cambridge, Cambridge, U.K.,
in 1977, the M.Eng. degree in solid-state electronics
from the University of Liverpool, Liverpool, U.K.,
in 1978, and the Ph.D. degree for research in the
LPE growth and electrical transport properties of
InGaAsP alloys from Sheffield University, Sheffield,
UK., in 1982.

He is the Chief Technical Officer with Intense, a
company he co-founded in 2000. He is currently sec-
onded to Intense from the University of Glasgow, Glasgow, UK, where he is
a Professor of Optoelectronic Systems in the Department of Electronics and
Electrical Engineering. He has developed new integration technologies for pho-
tonic integrated circuits based on quantum-well devices and quantum-well inter-
mixing, and has built up an extensive program of work on III-V-based photonic
integrated circuits for high-speed digital optical communications. He is author
or co-author of more than 380 journal and conference papers. His research inter-
ests are concerned with linear and nonlinear integrated optoelectronic systems,
primarily in semiconductors.

Prof. Marsh is an Elected Member of the LEOS Board of Governors for 3
years commencing January 2001 and is currently LEOS Vice President for Fi-
nance and Administration. He is a Member of the Executive Team of the IEE
Photonics Network. He is also a Member of the College of the Engineering and
Physical Sciences Research Council and of the Council of the Scottish Optoelec-
tronics Association. He is a Fellow of the Institution of Electrical Engineers, the
Royal Society of Arts, and the Royal Society of Edinburgh.



