1,945 research outputs found

    Probing new physics in electroweak penguins through B_d and B_s decays

    Full text link
    An enhanced electroweak penguin amplitude due to the presence of unknown new physics can explain the discrepancies found between theory and experiment in the B -> pi K decays, in particular in A_CP(B^- -> pi^0 K^-) - A_CP(\bar{B}^0 -> pi^+ K^-), but the current precision of the theoretical and experimental results does not allow to draw a firm conclusion. We argue that the \bar{B}_s -> phi rho^0 and \bar{B}_s -> phi pi^0 decays offer an additional tool to investigate this possibility. These purely isospin-violating decays are dominated by electroweak penguins and we show that in presence of a new physics contribution their branching ratio can be enhanced by about an order of magnitude, without violating any constraints from other hadronic B decays. This makes them very interesting modes for LHCb and future B factories. In arXiv:1011.6319 we have performed both a model-independent analysis and a study within realistic New Physics models such as a modified-Z^0-penguin scenario, a model with an additional Z' boson and the MSSM. In this article we summarise the most important results of our study.Comment: 8 pages, 5 figures, LaTeX. Talk given at Discrete2010, Rome, 6-11 December 2010; References adde

    The Solar Radius in the EUV during the Cycle XXIII

    Full text link
    Aims. To determine the solar transition region and coronal radius at EUV wavelengths and its time evolution during Solar Cycle XXIII. Methods. We use daily 30.4 and 17.1 nm images obtained by the Extreme Ultraviolet Imager (EIT) aboard the SoHO satellite and derive the solar radius by fitting a circle to the limb brightness ring. Results. The weighted mean of the temporal series gives (967''.56 +/- 0''.04) and (969''.54 +/- 0''.02) at 30.4 and 17.1 nm respectively. No significant correlation was found with the solar cycle at any of the two wavelengths. Conclusions. Since the temperature formation of the 30.4 nm line is between (60 - 80) 10^3 K (Transition Region), the obtained result is bigger than that derived from present atmospheric models. On the contrary this height is compatible with radio models.Comment: accepted for publication in Astronomy & Astrophysics minor changes introduced during review proces

    Towards all-order factorization of QED amplitudes at next-to-leading power

    Get PDF
    We generalise the factorization of abelian gauge theory amplitudes to next-to-leading power (NLP) in a soft scale expansion, following a recent generalisation for Yukawa theory. From an all-order power counting analysis of leading and next-to-leading regions, we infer the factorized structure for both a parametrically small and zero fermion mass. This requires the introduction of new universal jet functions, for non-radiative and single-radiative QED amplitudes, which we compute at one-loop order. We show that our factorization formula reproduces the relevant regions in one- and two-loop scattering amplitudes, appropriately addressing endpoint divergences. It provides a description of virtual collinear modes and accounts for non-trivial hard-collinear interplay present beyond the one-loop level, making this a first step towards a complete all-order factorization framework for gauge-theory amplitudes at NLP.Comment: 31 pages, 18 figures. v2: as in journal versio

    Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

    Get PDF
    Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected

    The energy of waves in the photosphere and lower chromosphere: 1. Velocity statistics

    Full text link
    Acoustic waves are one of the primary suspects besides magnetic fields for the chromospheric heating process to temperatures above radiative equilibrium (RE). We derived the mechanical wave energy as seen in line-core velocities to obtain a measure of mechanical energy flux with height for a comparison with the energy requirements in a semi-empirical atmosphere model. We analyzed a 1-hour time series and a large-area map of Ca II H spectra on the traces of propagating waves. We analyzed the velocity statistics of several spectral lines in the wing of Ca II H, and the line-core velocity of Ca II H. We converted the velocity amplitudes into volume and mass energy densities. For comparison, we used the increase of internal energy necessary to lift a RE atmosphere to the HSRA temperature stratification. We find that the velocity amplitude grows in agreement with linear wave theory and thus slower with height than predicted from energy conservation. The mechanical energy of the waves above around z~500 km is insufficient to maintain the chromospheric temperature rise in the semi-empirical HSRA model. The intensity variations of the Ca line core (z~1000 km) can be traced back to the velocity variations of the lowermost forming spectral line considered (z~ 250 km). The chromospheric intensity, and hence, (radiation) temperature variations are seen to be induced by passing waves originating in the photosphere.Comment: 13 pages, 15 figures + 2 pages Appendix, 5 figures, submitted to A &

    Inhomogeneities on the surface of 21 Lutetia, the asteroid target of the Rosetta mission

    Full text link
    CONTEXT: In July 2010 the ESA spacecraft Rosetta will fly-by the main belt asteroid 21 Lutetia. Several observations of this asteroid have been so far performed, but its surface composition and nature are still a matter of debate. For long time Lutetia was supposed to have a metallic nature due to its high IRAS albedo. Later on it has been suggested to have a surface composition similar to primitive carbonaceous chondrite meteorites, while further observations proposed a possible genetic link with more evolved enstatite chondrite meteorites. AIMS: In order to give an important contribution in solving the conundrum of the nature of Lutetia, in November 2008 we performed visible spectroscopic observations of this asteroid at the Telescopio Nazionale Galileo (TNG, La Palma, Spain). METHODS: Thirteen visible spectra have been acquired at different rotational phases. RESULTS: We confirm the presence of a narrow spectral feature at about 0.47-0.48 micron already found by Lazzarin et al. (2009) on the spectra of Lutetia. We also find a spectral feature at about 0.6 micron, detected by Lazzarin et al. (2004) on one of their Lutetia's spectra. More importantly, our spectra exhibit different spectral slopes between 0.6 and 0.75 micron and, in particular, we found that up to 20% of the Lutetia surface could have flatter spectra. CONCLUSIONS: We detected a variation of the spectral slopes at different rotational phases that could be interpreted as possibly due to differences in the chemical/mineralogical composition, as well as to inhomogeneities of the structure of the Lutetia's surface (e.g., the presence of craters or albedo spots) in the southern hemisphere.Comment: 3 pages, 2 figures. Accepted for publication in Astronomy and Astrophysics. Updated on 25 March 2010

    Positions and sizes of X-ray solar flare sources

    Get PDF
    <p><b>Aims:</b> The positions and source sizes of X-ray sources taking into account Compton backscattering (albedo) are investigated.</p> <p><b>Methods:</b> Using a Monte Carlo simulation of X-ray photon transport including photo-electric absorption and Compton scattering, we calculate the apparent source sizes and positions of X-ray sources at the solar disk for various source sizes, spectral indices and directivities of the primary source.</p> <p><b>Results:</b> We show that the albedo effect can alter the true source positions and substantially increase the measured source sizes. The source positions are shifted by up to ~0.5” radially towards the disk centre and 5 arcsec source sizes can be two times larger even for an isotropic source (minimum albedo effect) at 1 Mm above the photosphere. The X-ray sources therefore should have minimum observed sizes, and thus their FWHM source size (2.35 times second-moment) will be as large as ~7” in the 20-50 keV range for a disk-centered point source at a height of 1 Mm (~1.4”) above the photosphere. The source size and position change is greater for flatter primary X-ray spectra, a stronger downward anisotropy, for sources closer to the solar disk centre, and between the energies of 30 and 50 keV.</p> <p><b>Conclusions:</b> Albedo should be taken into account when X-ray footpoint positions, footpoint motions or source sizes from e.g. RHESSI or Yohkoh data are interpreted, and we suggest that footpoint sources should be larger in X-rays than in either optical or EUV ranges.</p&gt
    corecore