216 research outputs found

    Fluid geochemistry and seismic activityin the period 1998-2002 at Turrialba Volcano (Costa Rica)

    Get PDF
    Turrialba Volcano, located in Central-Southern Costa Rica, has been characterized, since the last period of eruptive activity in 1884-1886, by a weak and discontinuous fumarolic activity in the western area of its summit. During the 1998-2002 period, fumaroles discharging from central and West craters were collected for chemical analyses of major and trace gas compounds, 13C/12C in CO2 and 18O/16O and D/H (in one fumarolic condensate), isotopic ratios. Geophysical measurements (seismic activity and ground deformation), monitored in the same period, were compared to geochemical data to define the status of the volcanic system. Chemical and isotopic characteristics of fumaroles of Turrialba Volcano seem to be related to interaction processes between a magmatic source and a shallower hydrothermal aquifer. Since February 1997, seismicity at Turrialba Volcano gradually increased, while since August 2001 new fumaroles start to discharge from a new fracture system located in the area between central and West craters. Since September 2001, strong compositional changes of gas discharges have been recorded at central crater. These occurrences are possibly due to variations in the permeability of the conduit system feeding the fumaroles. Heat pulse episodes from a magmatic source have possibly caused the increase of vapour pressure at depth and, consequently, favoured the uprising of the magmatic fluids toward the surface. The observed evolution of chemical and physical parameters suggests that to forecast a possible renewal of the volcanic activity in the near future a full program of both geochemical and geophysical surveillance must be provided at Turrialba Volcano

    Morphological and geochemical features of crater lakes in Costa Rica: an overview.

    Get PDF
    This paper describes the compositional and morphological features of the crater lakes found in the volcanoes of Rincón de La Vieja, Poás, Irazú, Congo and Tenorio volcanoes (Costa Rica). As evidenced by the distribution of the water and dissolved gas chemistry along vertical profiles, the different fluid sources feeding the lakes reflect the present status of each of the volcanic systems. The chemical features of the Caliente (Poás volcano) and Rincón crater (Rincón de la Vieja volcano) lakes are mainly dependent on i) inputs of magmatic fluids from sub-lacustrine fumaroles and ii) water-rock interaction processes. Conversely, the Irazú lake is mainly affected by the presence of CO2(H2S)-rich fluids discharged from a hydrothermal system, which masked possible magmatic fluid contributions. Rainfall and organic activity are the main factors responsible for the chemical composition of Hule, Botos, Congo and Tenorio lakes. The chemical and isotopic water composition of Botos, Irazú and Hule lakes have displayed no significant variations along the vertical profiles. In contrast, Caliente lake shows a distinctive chemical stratification, mainly involving F-, Cl- and SO4 2-. The behaviour of these compounds seems to be governed by both dissolution of highly acidic species, i.e. HF, HCl and SO2 released from the magmatic environment, and microbial activity. Despite the significant increases with depth of dissolved CO2 at Caliente and Irazú lakes, the hazard for Nyos-type gas eruptions can be considered negligible, since i) the water volumes are too small and ii) the convective heat transfer limits the CO2 recharge rate. The relatively high concentrations of dissolved CO2 measured at the maximum depth of the Hule lake are likely produced by both degradation of organic material and degassing from a deep source. The sporadic episodes of fish deaths recently observed in this lake can be associated with lake overturn processes that have favoured the rise up to the lake surface of deep, oxygen-depleted waters.Journal of limnolog

    Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy).

    Get PDF
    The 38.5 m deep Lake Accesa is a sinkhole located in southern Tuscany (Italy) that shows a peculiar water composition, being characterized by relatively high total dissolved solids (TDS) values (2 g L-1) and a Ca(Mg)-SO4 geochemical facies. The presence of significant amounts of extra-atmospheric gases (CO2 and CH4), which increase their concentrations with depth, is also recognized. These chemical features, mimicking those commonly shown by volcanic lakes fed by hydrothermal-magmatic reservoirs, are consistent with those of mineral springs emerging in the study area whose chemistry is produced by the interaction of meteoric-derived waters with Mesozoic carbonates and Triassic evaporites. Although the lake has a pronounced thermocline, water chemistry does not show significant changes along the vertical profile. Lake water balance calculations demonstrate that Lake Accesa has &gt;90% of its water supply from sublacustrine springs whose subterranean pathways are controlled by the local structural assessment that likely determined the sinking event, the resulting funnel-shape being then filled by the Accesa waters. Such a huge water inflow from the lake bottom (~9·106 m3 yr-1) feeds the lake effluent (Bruna River) and promotes the formation of water currents, which are able to prevent the establishment of a vertical density gradient. Consequently, a continuous mixing along the whole vertical water column is established. Changes of the drainage system by the deep-originated waters in the nearby former mining district have strongly affected the outflow rates of the local mineral springs; thus, future intervention associated with the ongoing remediation activities should carefully be evaluated to preserve the peculiar chemical features of Lake Accesa.</p

    A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab

    Get PDF
    An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen

    A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab

    Get PDF
    An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen

    Fluid geochemistry and seismic activityin the period 1998-2002 at Turrialba Volcano (Costa Rica)

    Get PDF
    Turrialba Volcano, located in Central-Southern Costa Rica, has been characterized, since the last period of eruptive activity in 1884-1886, by a weak and discontinuous fumarolic activity in the western area of its summit. During the 1998-2002 period, fumaroles discharging from central and West craters were collected for chemical analyses of major and trace gas compounds, 13C/12C in CO2 and 18O/16O and D/H (in one fumarolic condensate), isotopic ratios. Geophysical measurements (seismic activity and ground deformation), monitored in the same period, were compared to geochemical data to define the status of the volcanic system. Chemical and isotopic characteristics of fumaroles of Turrialba Volcano seem to be related to interaction processes between a magmatic source and a shallower hydrothermal aquifer. Since February 1997, seismicity at Turrialba Volcano gradually increased, while since August 2001 new fumaroles start to discharge from a new fracture system located in the area between central and West craters. Since September 2001, strong compositional changes of gas discharges have been recorded at central crater. These occurrences are possibly due to variations in the permeability of the conduit system feeding the fumaroles. Heat pulse episodes from a magmatic source have possibly caused the increase of vapour pressure at depth and, consequently, favoured the uprising of the magmatic fluids toward the surface. The observed evolution of chemical and physical parameters suggests that to forecast a possible renewal of the volcanic activity in the near future a full program of both geochemical and geophysical surveillance must be provided at Turrialba Volcano

    Nitrogen, helium, and argon reveal the magmatic signature of fumarole gases and episodes of outgassing from upper-crustal magma reservoirs. The case of the Nisyros caldera (Aegean Arc, Greece)

    Get PDF
    The chemical composition of gases emitted by active volcanoes reflects both magma degassing and shallower processes, such as fluid-rock hydrothermal interaction and mixing with atmospheric-derived fluids. Untangling the magmatic fluid endmember within surface gas emission is therefore challenging, even with the use of well-known magma degassing tracers such as noble gases. Here, we investigate the deep magmatic fluid composition at the Nisyros caldera (Aegean Arc, Greece) by measuring nitrogen and noble gas abundances and isotopes in naturally degassing fumaroles. Gas samples were collected from 32 fumarolic vents at water-boiling temperature between 2018 and 2021. These fumaroles are admixtures of magmatic fluids typical of subduction zones, groundwater (or air saturated water, ASW), and air. The N2, He, and Ar composition of the magmatic endmember is calculated by reverse mixing modeling and shows N2/He = 31.8 ± 4.5, N2/Ar = 281.6, d15N = +7 ± 3 ‰, 3He/4He = 6.2 Ra (where Ra is air 3He/4He), and 40Ar/36Ar = 551.6 ± 19.8. Although N2/He is significantly low with respect to typical values for arc volcanoes (1,000–10,000), the contribution of subducted sediments to the Aegean Arc magma generation is reflected by the positive d15N values of Nisyros fumaroles. The low N2/He ratio indicates N2-depletion due to solubility-controlled differential degassing of an upper-crustal silicic (dacitic/ rhyodacitic) melt in a high-crystallinity reservoir. We compare our 2018–2021 data with N2, He, and Ar values collected from the same fumaroles during a hydrothermal unrest following the seismic crisis in 1996–1997. Results show additions of both magmatic fluid and ASW during this unrest. In the same period, fumarolic vents display an increase in magmatic species relative to hydrothermal gas, such as CO2/CH4 and He/CH4 ratios, an increase of 50 C in the equilibrium temperature of the hydrothermal system (up to 325 C), and greater amounts of vapor separation. These variations reflect an episode of magmatic fluid expulsion during the seismic crisis. The excess of heat and mass supplied by the magmatic fluid injection is then dissipated through boiling of deeper and peripheral parts of the hydrothermal system. Reverse mixing modeling of fumarolic N2-He-Ar has therefore important ramifications not only to disentangle the magmatic signature from gases emitted during periods of dormancy, but also to trace episodes of magmatic outgassing and better understand the state of the upper crustal reservoir
    • …
    corecore