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ABSTRACT ARTICLE HISTORY

A geochemical study was carried out on gas, water and mud samples from four mud volcanoes in Received 3 September 2019
Gorgan Plain, SE Caspian Sea (Iran) in order to investigate fluid primary sources and secondary Accepted 12 January 2020
processes controlling fluid chemistry. The chemical composition of light alkanes and the isotopic KEYWORDS

feature of methane indicated an origin related to a thermogenic source. Gases discharged from Mud volcanoes; fluid
Neftlijeh evidenced anaerobic biodegradation processes with addition of secondary microbial geochemistry; secondary
methane. Chemical composition of discharged waters revealed two main groups i) brine-type geochemical processes;
Na*-CI~ waters from Gharenyaregh and Neftlijeh mud volcanoes, which were marked by relatively Gorgan Plain; Caspian Sea;
high Na*/CI™, B/CI™ and Li/Cl" ratios and low Ca**/CI~, Mg®*/Cl~ and K*/CI" ratios, ii) waters from Iran

Sofikam and Inche, characterized by relatively low Na*/CI~, B/CI™ and Li/Cl™ ratios and relatively

high Ca**/CI~, Mg®*/Cl~ and K*/CI™ ratios. The chemical and isotopic characteristics of the dis-

charged waters suggest that evaporated Caspian seawater trapped in sediments is likely repre-

senting a reliable water source. The maximum formation depth at Gharenyaregh and Neftlijeh mud

volcanoes were estimated at about 6 km depth whereas the generation depth of the rest was

significantly shallower. Thus, the observed compositional differences can be related to the differ-

ent depths of the fluid source feeding them.

Introduction Milkov 2005; Etiope et al. 2009a), and pose environmen-
tal concerns, since methane is a potent greenhouse gas
(Milkov 2005; Etiope et al. 2008).

The origin of methane and light hydrocarbons dis-
charged from MVs is commonly ascribed to (i) thermal
degradation of pre-existing organic material (thermo-
genesis) and/or (ii) microbial activity (Bernard et al.
1978; Schoell 1980, 1983; Chung et al. 1988; Seewald
et al. 1998; Whiticar 1999; Seewald 2003; Takai et al.
2008), the latter not being necessary related to any
potential source rock (Schoell 1983). Gases from these
two sources can be distinguished by using the carbon
isotopic composition of methane (Milkov and Etiope
2018): 8'3C; values lighter than —50%o vs. V-PDB are
typical of microbial activity, i.e. a process proceeding
through either fermentation or carbon dioxide reduc-
tion, whereas &'3C; values from —15%o to —75%o Vs.
V-PDB are commonly shown by thermogenic methane,
i.e. thermal breakdown of pre-existing organic matter,
typically associated with relatively high concentrations
of heavier hydrocarbons (Whiticar 1994). Carbon and
hydrogen isotopes of methane coupled with the relative
abundances of light alkanes are used to discriminate

Mud volcanoes (MVs) are produced by the outflow of
mud, water and gas phases, mostly consisting of
methane, with significant concentrations of higher
hydrocarbons compounds, CO,, N, and H,S, released
by overpressured organic-rich sediments rapidly buried
in sedimentary basins (Dia et al. 1999; Milkov 2000;
Dimitrov 2002; Etiope et al. 2007). Fluids uprising
through deep-rooted feeding channels may also be
stored in mud chambers located at intermediate-to-
shallow depth, giving rise to buried MVs that can be
recognized with geophysical surveys (Deville et al.
2003; Mazzini et al. 2009). MVs occur in many sedimen-
tary basins related to convergent plate margins, accre-
tionary wedges, passive margins within deltaic systems
(Kopf et al. 2001), and active hydrothermal areas (Etiope
et al. 2002). They are known to be associated with faults
and faulted anticlines in active tectonic settings (Kopf
2002), where the tectonic stress, mainly compressional,
acts as the main driving force. MVs are investigated for
hydrocarbon exploration, as a possible evidence of sub-
surface petroleum accumulations (Deville et al. 2003;
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between these two-genetic processes (Bernard et al.
1978; Schoell 1980, 1983; Chung et al. 1988; Whiticar
1999), since thermogenic gases have relatively high con-
centrations of ethane, propane, butane and pentane
than those recorded in microbial gases (Schoell 1980;
Hinrichs et al. 2006). However, the original chemical and
isotopic composition of deep-originated gas may be
affected by post-genetic processes, such as anaerobic
biodegradation of petroleum coupled with an addition
of secondary microbial methane occurring at relatively
shallow depth (Pallasser 2000; Etiope et al. 2009b; Milkov
2011, 2018), which may mask the pristine chemical and
isotopic features of the primary gases.

Consequently, C;-C4 hydrocarbons were widely inves-
tigated to reveal the origin of gas discharged from fluid
escape in sedimentary structures associated with various
geologic settings (e.g. Delisle et al. 2002; Deville et al.
2003; You et al. 2004; Guliyev et al. 2004; Etiope et al.
2006, 2007; Tassi et al. 2012; Prinzhofer and Deville 2013;
Ray et al. 2013). A data-set including chemical and iso-
topic signatures of light hydrocarbons discharged from
worldwide onshore MVs indicated that they are domi-
nantly related to thermogenic process (Etiope et al. 2008,
2009a), suggesting the presence of a potential source
rock at catagenetic stage, i.e. occurring at temperatures
typically >60°C (Hunt 1984; Milkov 2005). Chemical and
isotopic compositions of the water phase discharged
from MVs are good tracer to identify type and possible
source of fluid. Additionally, useful insights can be
obtained on depositional environments (presence of
marine or non-marine evaporites), diagenetic processes,
such as dissolution and precipitation of minerals, ion
exchanges, organic matter degradation and clay mineral
dehydration, which can be affected by temperature,
depth and mixing processes (Rittenhouse 1967; You
et al. 1993; Hanor 1994; Worden 1996; Dia et al. 1999;
Kopf and Deyhle 2002; Kharaka and Hanor 2004; Chung
et al. 2015).

Solid phases associated with the discharged fluids,
called mud breccia, generally consist of clay-rich mud
matrix and heterogenic rock fragments extruded from
subsurface plumbing systems of MVs (Dimitrov 2002;
Kopf and Deyhle 2002). Clay mineral alteration (e.g. illi-
tization of smectite) is commonly assumed to be related
to mud volcanism (Kopf and Deyhle 2002; Lavrushin
et al. 2005). Since MVs mainly consist of smectite-rich
mud (Fitts and Brown 1999), boron can be adsorbed by
this clay mineral and then released to pore fluids
through temperature-driven smectite-illite transforma-
tion during burial or tectonic processes (Colten-Bradley
1987; You et al. 1996). Consequently, insights into tem-
peratures at depth in the various compressional tectonic
settings can be gathered by this element, although

boron can also be enriched by degradation of organic
matter in buried sediments (Williams et al. 2001; Kharaka
and Hanor 2004).

The South Caspian Basin, which includes the Southern
Caspian Sea and the coastal zones of Iran, Azerbaijan and
Turkmenistan, is one of the oldest gas- and oil-bearing
provinces in the world (Smith-Rouch 2006). This basin is
well known for a large number of small-to-huge MVs
(Figure 1) that occasionally produce impressive eruptions
(Planke et al. 2003). These structures predominantly
release thermogenic gas and are often found in associa-
tion with petroleum fields (Fowler et al. 2000).

This paper reports the chemical and isotopic features of
hydrocarbon-rich gases and waters, as well as a qualitative
estimation of the mud-forming minerals, emitted from four
onshore MVs, namely Sofikam, Inche, Gharenyaregh and
Neftlijeh (Omrani and Raghimi 2018) which are located in
the Gorgan Plain (SE Caspian Sea, Iran), to provide informa-
tion about the origin and the main geochemical processes
controlling fluid geochemistry.

Geological setting

The South Caspian Basin, one of the deepest sedimen-
tary basins in the world (Devlin et al. 1999), is bounded
by Caucasus, Talesh, Alborz and Kopeh Dagh mountains.
Sediments derived by erosion and dismantling of these
mountain belts fill up the subsiding South Caspian Basin
and led, in the Pliocene-Quaternary, to the deposition of
thickest sedimentary series at a rate of up to 3 km/Ma
(Brunet et al. 2003). A thick clay-dominated sedimentary
cover (up to 25-30 km) and a low geothermal gradient
(15-18°C/km) characterize the South Caspian Basin. The
high sedimentation rate was likely responsible of under-
compacted sedimentary sequences, pore water over-
pressure, maturation of organic material and formation
of structural traps, which are typical of mud volcanism
areas (Abrams and Narimanov 1997; Tagiyev et al. 1997).

More than 400-active onshore and offshore MVs are
present in this region. They are mostly associated with
hydrocarbon fields within hydrocarbon-bearing faulted
anticlines (Guliyev and Feizullayev 1996; Fowler et al.
2000). The geochemistry of fluids discharged from the
South Caspian Basin MVs, including those exposed in
Cheleken peninsula  (western  Turkmenistan) and
Azerbaijan were extensively studied (Planke et al. 2003;
Davies and Stewart 2005; Mazzini et al. 2009; Oppo et al.
2014; Lavrushin et al. 2015). The Oligocene-Early Miocene
Maykop Formation, including layers of anoxic fine-grained
and organic-rich sediments (Abrams and Narimanov 1997;
Feyzullayev et al. 2001; Hudson et al. 2008), is to be
regarded as the main fluid source (Figure 2; Inan et al.
1997; Fowler et al. 2000). However, some clasts found in
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Figure 1. Schematic map showing the location of onshore mud volcanoes in the South Caspian Basin including those of Azerbaijan
(mud volcanic regions: (I) Caspian, (Il) Absheron, (lll) Shemakha-Gobustan and (IV) Kura; Lavrushin et al. 2015; Jakubov et al. 1971),

Turkmenistan (Oppo et al. 2014) and Iran.
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Figure 2. Generalized schematic stratigraphic column of South
Caspian Basin (adopted from Green et al. 2009).

the mud breccias suggested possible contributions from
deeper sedimentary sequences (i.e. Middle-late Miocene
Diatom Series and Mesozoic deposits; Guliyev and
Feizullayev 1996; Inan et al. 1997; Feyzullayev et al. 2001).

The Gorgan Plain, where MVs of current work pre-
sented, is located at 36° 40" to 37° 30" N and 53° 38" to
55° 38" E (Figure 3) in the Golestan province (NE Iran).
The sedimentary successions of this Plain are part of
those of the South Caspian and Kopeh Dagh Basins.
The Kopeh Dagh Basin, as an elongated E-W trending
basin located to the northeast of Iran and east of the
South Caspian Basin. The boundary between the thick
sedimentary series of South Caspian (Pliocene to
Pleistocene) and the faulted and eroded formations of
Kopeh Dagh (Jurassic to Eocene) beneath the eastern
Gorgan is marked by a major Eocene-Oligocene angular
unconformity. Although, above this unconformity, the
faulted shale ridge structures on seismic section has
been observed which are probably Maykop Formation
(Robert et al. 2014). Ongoing geochemical investigations
on a newly dug petroleum exploration well located near
Sofikam MV also revealed the occurrence of a sequence
similar to that characterizing the Maykop formation
(Dr M. Mosavi Rohbakhsh; personal communication),
the latter being possibly the source rock of gas seepages.
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Figure 3. Schematic geological map of southeastern of Caspian Sea, Gorgan Plain, Iran showing the location of investigated MVs
(modified after Saeedi and Andalibi 1993) controlled by faults/folds of Kopeh Dagh Basin (adapted from Omrani and Raghimi 2018).

The shale ridge structures are overlain by the Late
Miocene yellow horizon and the Pliocene Cheleken for-
mation. In the South Caspian Basin, the main hydrocar-
bon reservoirs are hosted within the Cheleken
formation, which shows an increasing thickness from
the Eastern Gorgan Plain towards the Caspian Sea and
mainly consists of green or dark red sand-containing
marls and thick layers of sandstone and conglomerate
deposits (Guliyev and Feizullayev 1996; Abrams and
Narimanov 1997; Fowler et al. 2000; Planke et al. 2003;

Stewart and Davies 2006; Torres 2007). An overpressured
gas-dominated layer was found in the Cheleken forma-
tion during the drilling of two exploration wells located
near Gharenyaregh MV in Gorgan Plain. The Cheleken
formation is overlain by Late Pliocene claystone and
marls with minor interbedded sandstones (Akchagyl
Formation), followed by Pleistocene (Apsheron forma-
tion) and late Pleistocene-Holocene strata of the Baku,
Khazarian, Khvalynian and Neocaspian stages (Mosavi
Rohbakhsh 2001). Thin layers of volcanic ashes were



reported to occur in the Akchagyl and Apsheron forma-
tions (Alizadeh et al. 2016). In the Gorgan Plain, wells for
gas-oil exploration were drilled at shallow-to-
intermediate depth (1,000-3,500 m), revealing the
occurrence of microbial methane associated with iodine
bearing high-salinity waters hosted within the Akchagyl
and Apsheron formations (Mosavi Rohbakhsh 2001;
Khajeh et al. 2007).

The buried Mesozoic Kopeh Dagh formations, which
outcrop at the eastern part of Gorgan plain, have up to
10-km thickness (Berberian and King 1981). Upper
Cretaceous begin with the glauconite sandstones of
Aitamir formation and end with limestones of Kalat
(Sharafi et al. 2012). Lower Cretaceous begin with the
conglomerates and sandstones of the Shurijeh forma-
tion and end with the dark-grey shales and siltstones of
the Sanganeh (Raisossadat 2004). Jurassic sediments
include sandstones and shales of the Kashafrud (Middle
Jurassic) are overlain by grey shales and marly lime-
stones of Chaman Bid and the limestone of Mozduran
with Upper Jurassic in age. The Kashafrud and Chaman
Bid formations are the main source rocks and Tirgan
(Lower Cretaceous) and Mozduran formation are the
potential and main gas reservoirs in the Kopeh Dagh
range, respectively (Robert et al. 2014).

MVs of Gorgan

Gharenyaregh, Inche, Sofikam and Neftlijeh MVs (Figure
4(a—f)) formed on the flat Quaternary plain located in the
coastal region of South Caspian Sea (Figure 3). In addi-
tion, nearly 20 extinct MVs controlled mostly by fault/
fold structures have been reported (Omrani and Raghimi
2018). There are also buried MVs identified during seis-
mic surveys in this area (Rezvandehy et al. 2011).

The morphology of the four MVs was already
described by Omrani and Raghimi (2018). All MVs are
as caldera-like depressions with limestone blocks within
mud island of Gharenyaregh (Figure 4(c)) and concentric
ring collapse structures on the outskirts of Neftlijeh
(Figure 4(e)) which can be ascribed to intense and per-
sistent mud fluid emissions during the past. Water pools
of Gharenyaregh were characterized by dark oily irides-
cences, whilst bubbling gases released strong smell of
rotten eggs (Figure 4(b)). The rock fragments originating
from glauconitic sandstones of the Aitamir Formation
(Upper Cretaceous) belonging to underlying Kopeh
Dagh units were only found around Gharenyaregh indi-
cating a deep source (Omrani and Raghimi 2018).

The location of MVs coincide with subsurface anticli-
nes and NW-SE and NE-SW trending faults of the western
Kopeh Dagh fold-thrust belt (Figure 3). The five pools of
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the Sofikam define an alignment with northeast direc-
tion (N60°), which is coincident with the fold axes and
main faults of Kopeh Dagh (Omrani and Raghimi 2018).
Several small seeps, approximately 0.5 m in diameter,
occur in the collapsed sectors from the outer flanks of
Gharenyaregh along NW-trending faults (Figure 4(a,b)),
likely related to the tectonic stress that caused the for-
mation of this MV (Rezvandehy et al. 2011).

Materials and method

Bubbling gases of the Sofikam, Neftlijeh, Inche and
Gharenyaregh MVs were collected in 2017. The first
three MVs were sampled using a plastic funnel up-side-
down positioned above the bubbling sites and con-
nected through a silicon tube to a pre-evacuated glass
bottle equipped with a thorion valve (Vaselli et al. 2006).
Gas sampling from three pools at Gharenyaregh was
carried out using 40-mL gas vials equipped with
a rubber septum instead of the glass bottle.

The chemical and isotopic (5§'3C; and 6'3C-CO,) com-
position of gas was carried out at the Laboratory of Fluid
Geochemistry of the Department of Earth Sciences
(University of Florence, Italy). The inorganic gas fraction
(COy Ny, Ar+0, and H,) was analysed by gas chromato-
graphy (GC) using a Shimadzu 15A instrument equipped
with a Thermal Conductivity Detector (TCD). Argon and
O, were separately analysed using a Thermo Focus gas
chromatograph equipped with a 30 m long capillary
molecular sieve column and a TCD. Methane and C,-C,
hydrocarbons were determined by using a Shimadzu 14A
gas chromatograph equipped with a Flame lonization
Detector (FID) and a 10 m long stainless-steel column
packed with Chromosorb PAW 80/100 mesh coated with
23% SP 1700 (Vaselli et al. 2006). The analytical error for
the GC analysis was <10%. The carbon isotopes in CO,
(expressed as §"3C-CO, %o vs. V-PDB) were determined by
using a Finnigan Delta Plus mass spectrometer (MS), after
extracting and purifying CO, by using liquid N, and N,-
trichloroethylene cryogenic traps (Evans et al. 1998; Vaselli
et al. 2006). Internal (Carrara and S. Vincenzo marbles) and
international (NB18 and NBS19) standards were used for
estimating the external precision. Analytical uncertainty
and reproducibility were +0.05%o0 and +0.1%o, respec-
tively. The carbon isotopes in CH, (expressed as &'3C,
%o vs. V-PDB) were measured by Cavity Ring-Down
Spectroscopy (CRDS) using a Picarro G2201-i Analyser.
The errors of the CRDS analysis was <1%o. In order to
avoid interferences, the instrument inlet line was
equipped with (i) a Drierite trap and (ii) a copper trap for
the removal of water vapour and H,S, respectively.
According to the operative ranges of the Picarro G2201-i
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Figure 4. (a) Lateral view of Gharenyaregh MV with a mud island inside, surrounded by a collapsed area filled with saline water and
the location of pools (black arrows) probably controlled by a fault, (b) a small seepage (Pool No. 4) within the collapsed area of
Gharenyaregh, which is set along other seeps, (c) sedimentary rock fragments within a dried gryphon on island of Gharenyaregh, (d)
Sofikam MV showing five pools characterized by permanent fluid emissions define an alignment with northeast direction (N60°),
which is coincident with the fold axes and main faults of Kopeh Dagh (Omrani and Raghimi 2018), (e) Neftlijeh MV where concentric
collapse structures are visible in the left-hand side inner flank, and (f) lateral view of Inche MV.

instrument (up to 500 ppm), gas samples were diluted
using a N,-O,-Ar gas mixture.

Water samples were collected from both pools and
crater lakes during two campaigns in 2016 and 2017.
They were stored in 50-mL polyethylene bottles after
filtering at 0.45 um in field for chemical and isotopic
analysis. One water sample was taken directly from
a well (1,000-1,200-m depth) drilled for iodine extraction
from brines near Inche in 2017. At each site, temperature
and pH were measured in the field using an EXTECH®
(ExStik® EC500) portable multi-parametric instrument
and one filtered and two filtered and acidified (with

Suprapure HCl and HNO;, respectively) samples were
collected.

Analysis on the major components and trace ele-
ments of the water were carried out at the Department
of Earth Sciences (University of Florence, Italy). Main
cations (Na*, K*, Ca**, Mg®* and NH,") and anions (CI~,
S0,%, HCO;5~, NO5™, Br and F7) were analysed using ion
chromatography (Metrohm 861 and 761, respectively).
Boron was analysed using the Azomethine-H (AH)
method (Bencini 1985) by molecular spectroscopy
(MSQ) using a Philips UNICAM analyser. The analytical
errors for IC and MSC were <5%. Li concentrations were



determined by Inductively Coupled Plasma Optical
Emission Spectrometry (ICP-OES) using an Optima 8000
Perkin Elmer spectrometer. The analytical error for ICP-
OES was <10%. Oxygen (expressed as §'0-H,0 %o vs.
V-SMOW) and hydrogen (expressed as 6D-H,O vs.
V-SMOW) analysis were carried out using Finnigan MAT
Delta plus XP + Gasbench at G.G Hatch Stable Isotope
Laboratory, Faculty of Science, Ottawa University
(Canada). The precision (2 sigma) of the analysis was
+0.15%0 and +2.0%o for 6'®0-H,0 and &D-H,0,
respectively.

Mineralogical analyses of the powdered mud samples
from all four MVs under consideration were carried out
at the Department of Earth Sciences (University of
Florence) by XRD using a Philips PW 1050/37. In order
to separate the <4 um clay-sized fraction, few grams (2
g) of powdered samples were placed in about 50 mL of
MilliQ water, then dispersed by ultrasonic probe and
washed and centrifuged at least four times. The wet
sediments were transferred to sedimentation cylinders
at which 100 mL MilliQ water was added and allowed it
to be settled for 1 h (Stocks’ law). Once the <4 pm clay
suspension was recovered and dried, few millilitre of
water was added and agitated with a glass rod. About
3-5 mL of the water-sediment suspension was placed on
glass slides and left to be dried at room temperature.
The clay minerals were recognized on the dry sample i)
without any further treatment; ii) after spraying ethylene
glycol; iii) after heating in a ventilated stove at 450°C for
1.5 h and iv) after heating in a ventilated stove at 650°C
for 1.5 h.

Results

The chemical (in % by vol.) and isotopic gas composition
are reported in Supp. Table 1. Methane was the domi-
nant alkane in the bubbling vents at Inche (4 samples:
from 80.5% to 93.2%), Gharenyaregh (3 samples: from
43.3% to 80.3%), Sofikam (4 samples: from 50.3% to
84.7%), and in the Neftlijeh crater lake (1 sample:
90.7%). Light alkanes (ethane, propane, i-butane and
n-butane) had concentrations up to 5.79%, 0.89%,
0.35% and 0.22%, respectively (Supp. Table 1).
Concentrations of N, ranged from 1.5% to 50.0%,
whereas those of O, were <3.31%.

The 8'3C, values were in a relatively narrow range:
from —45.6%o to —55.1%o vs. V-PDB. The §'3C-CO, values
at Sofikam, Gharenyaregh and Inche MVs were from
-174%0 to -26.4%o0 vs. V-PDB, whereas that at
Neftlijeh was 3.1%o vs. V-PDB.

The chemical and isotopic composition of the waters
discharged by Gorgan MVs is listed in Supp. Table 2. The
pH values of the Sofikam, Inche, Gharenyaregh and
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Neftlijeh pools and Gharenyaregh lake were up to 7.2,
6.8, 7.7, 8.9 and 7.8, respectively. Considering that the
measured temperatures ranged from 24.0°C to 30.3°C
(Supp. Table 2) and that the ambient temperature was
from 25°C to 31°C, these emergences cannot be consid-
ered as thermal waters. Waters were characterized by
a Na-Cl composition, with Na* and CI~ concentrations
ranging from 12 to 43.7 g/L and from 34.5 to 102 g/L,
respectively. Relatively high concentrations of NH,* (19
to 310 mg/L) were measured. Waters from
Gharenyaregh and Neftlijeh showed HCO3;™ (622 to
2,280 mg/L), Li (16.3 to 25.5 mg/L) and B (97 to
1084 mg/L) concentrations significantly higher than
those recorded at Sofikam and Inche. The former had
relatively low concentration of Ca%* (197 to 855 mg/L)
and Mg?* (320 to 914 mg/L). Concentrations of SO, in
the Gharenyaregh waters (up to 11,240 mg/L) were one
order of magnitude higher than those measured in the
other sites.

The water sample from the iodine production well
was Na-Cl type and was characterized by relatively
high concentration of Ca?* (4,900 mg/L), Mg**
(4,650 mg/L), Li (60.3 mg/L), NH,* (423 mg/L) and SO,>
(8,620 mg/L).

The 6'®0-H,0 and 8D-H,O values of the Sofikam
waters ranged from —1.78%c to 1.04%o0 and from
—30.1%o to —17.3%o0 vs. V-SMOW, respectively. Heavier
8'80-H,0 and 8D-H,O values were measured in the
lakes from Inche (0.88%0 to 1.11%o0 and —16.7%o to
—15.9%o0 vs. V-SMOW, respectively), Neftlijeh (3.17%o to
4.10%o0 and —8.9%o to —10.0%o vs. V-SMOW, respectively)
and the Gharenyaregh water pool (1.10%o to 1.39%o and
—20.0%o to —18.2%o vs. V-SMOW, respectively).

Quartz, calcite, halite, muscovite, illite, albite, clino-
chlore and microcline were found in the mud samples
for all the studied MVs. Gypsum was only found in mud
samples from Sofikam and Inche MVs, whereas dolomite
and traces of marcasite were recognized in the mud
samples from Gharenyaregh and Neftlijeh. Clay minerals
in the <4 pm fraction were consisting of illite, chlorite
and kaolinite with low contents of smectite, with no
significant differences among the studied mud samples.

Discussion
Processes controlling the chemistry of gases

Gas chemistry from the Gorgan MVs can be related to
a mixing process between an N,-rich (air-like) and a CH,4-
rich component. The N,/Ar ratios range from 51.6 to 79.4
(Supp. Table 1), i.e. between those of air (83.6) and air-
saturated water (ASW: 38.3), indicating that both N, and
Ar have a meteoric origin. Considering that deep-originated
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gases feeding MVs are O,-depleted, the occurrence of O,
(<3%) suggests some air contamination at shallow depth
and/or during the gas sampling. A significant contribution
of mantle He is to be ruled out due to the low Rc/Ra values
ranging between 0.08 and 0.12 (Mehrabi et al. 2017).

The CH,4-rich component is typical of gases related to
mud volcanism occurring in sedimentary basins (e.g. Dia
et al. 1999; Dimitrov 2002; Mazzini et al. 2009; Tassi et al.
2012; Bonini et al. 2013). As shown in the §'3C; vs. C;/(Ca,)
binary diagram (Figure 5; Milkov and Etiope 2018), gases
from the Gorgan MVs fall in the field of thermogenic gas. It
is worth noting that gases from Azerbaijan and
Turkmenistan MVs (Etiope et al. 2009a), which are related
to a geodynamic setting similar to that of the study area,
showed similar §'3C; values, whereas their C,/(C,.) ratios
were significantly higher than those of the Gorgan Plain
gases. Such geochemical features were interpreted as
related to secondary processes acting during the uprising
of thermogenic gases: (i) molecular fractionation due to
the gas transfer from reservoir to surface; (ii) secondary
anaerobic biodegradation (Pallasser 2000; Katz et al. 2002;
Deville et al. 2003; Etiope et al. 2007, 2009a, 2009b).
Secondary anaerobic biodegradation processes were
reported to extensively affect also gases from hydrocar-
bon fields and MVs located in the western sector of South
Caspian Sea (Figure 6), showing isotopically heavy CO,
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Figure 5. Plot of C;/Cy, ratios vs. 8'3C; values for the gases
emitted from Sofikam, Gharenyaregh, Inche and Neftlijeh MVs.
Typical fields for microbial, thermogenic and abiotic gases (CR -
CO, reduction, F — methyl-type fermentation, SM - secondary
microbial, EMT - early mature thermogenic gas, OA - oil-
associated thermogenic gas and LMT - late mature thermogenic
gas; Milkov and Etiope 2018) are outlined. The gas data from
MVs of Azerbaijan and Turkmenistan (Etiope et al. 2009a, 2009b)
are also reported for comparison.
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F — methyl-type fermentation, EMT — early mature thermogenic
gas, OA - oil-associated thermogenic gas and LMT - late mature
thermogenic gas; Milkov and Etiope 2018) for gases from
Gorgan MVs and those from Azerbaijan and Turkmenistan MVs
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(Feyzullayev and Movsumova 2001). This feature is typical
of gases from petroleum reservoirs located at shallow
depths (<2000 m) and relatively low temperatures
(<75°C), where water temperature and availability of oxy-
anions (NOs ", 5042' and HCOs™) can play a key role in the
gas evolution (Pallasser 2000). CO, generated by anaero-
bic oxidation of petroleum or heavy hydrocarbons is con-
sumed by methanotrophs (Pallasser 2000; Head et al.
2003; Jones et al. 2008; Milkov 2011, 2018). The residual
'2C-depleted CO, is highly indicative of secondary micro-
bial methane formed during petroleum biodegradation
(Milkov 2011, 2018). Among the South Caspian gases,
secondary anaerobic biodegradation and the occurrence
of secondary microbial methane is only documented by
the composition of Neftlijeh gas sample, which was char-
acterized by a positive &'>C-CO, value (Figure 6).
Contrarily to the Azerbaijan gases, those from Gorgan
Plain seem to be poorly affected by molecular fractiona-
tion. This occurs in the presence of high gas fluxes or
when the distance from the reservoir to the surface is
rather short. In both cases, gas-water-mud interactions
leading to loss of C;, compounds are kinetically disadvan-
taged and thus, they do not affect the ascending gas
(Etiope et al. 2007, 2009b).

There are two geological evidences suggesting that
thermogenic source play a key role in the formation of
the Gorgan Plain gases: (i) the gas layers recognized by
geophysical investigations in the Cheleken formation
around the Gharenyaregh MV (Rezvandehy et al. 2011),



and (ii) the potential source rock formations recently
identified in wells drilled and on seismic sections in the
study area, which are similar to the Maykop formation
and Middle Miocene-Late Miocene deposits and prob-
ably buried Mesozoic sediments of Kopeh Dagh Basin.
Sedimentary basins and MVs from the South Caspian
Basin include four potential fluid source rocks;
i) Palaeogene-Lower Miocene marine mudstones, com-
prising organic-rich fine-grained, clay-dominated layers
with fine to very fine sandstone strata and dolomite-rich
beds, ii) Middle-Late Miocene shales and marls inter-
bedded with sandstones and siltstones with diatom
suite, iii) Lower Cretaceous greyish-green claystone, yel-
lowish-red sandstones and subordinate conglomerates
and iv) Middle Jurassic sedimentary sequences consist-
ing of clay-rich facies interbedded with fine grained
sandstones and siltstones (Inan et al. 1997; Feyzullayev
et al. 2001; Guliyev et al. 2004; Hudson et al. 2008; Bonini
et al. 2013).

Water geochemistry and mud mineralogy

The waters collected from the Gorgan Plain MVs have
a relatively high TDS values (44-127 g/L), higher than
those of water emergencies located in adjacent areas,
e.g. Turkmenistan, where the TDS values were from 23 to
50.7 g/L (Oppo et al. 2014), and a Na*™-CI~ composition
(Supp. Table 2), typical of a brine (Hem 1970).

The occurrence of brines in sedimentary basins is
commonly attributed to halite dissolution (Dresel and
Rose 2010; Pinti et al. 2011) or seawater trapped in
geological formations (Birkle et al. 2009; Luders et al.
2010). Seawater evaporation trend (SET) has extensively
been applied to determine the origin of salinity in sedi-
mentary basins (Bottomley et al. 1999; Kharaka and
Hanor 2004). Gorgan waters follow SET (Figure 7),
although variations in the CI7/Br~ ratios were likely
caused by the concomitant evaporation and halite dis-
solution (Knauth 1988).

Brine chemistry from oilfields is controlled by a variety of
physical processes such as mixing between deep and shal-
low waters and chemical reactions such as mineral dehy-
dration, adsorption and desorption on clay minerals,
precipitation and dissolution of carbonate minerals and
degradation of organic material leading to increasing alka-
linity, NH,*, B and Br~ and decreasing concentration of
oxidized species such as 5042" (Kharaka and Smalley 1976;
Lagunova 1976; You et al. 1993; Kopf and Deyhle 2002).

Chloride shows a conservative chemical behaviour in
pore waters and its distribution in fluids from MVs can
provide useful insights into the water sources. The TDS
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versus Na*/CI™ plot (Figure 8), as well as the ratios between
CI™ and the main cations (Na*, Ca®*, Mg®*, K*, and Li*) and
B (Figure 9 and Supp. Table 2), allow to distinguish two
groups: i) waters from Gharenyaregh and Neftlijeh MVs,
which are characterized by Na*/Cl~, B/Cl™ and Li/Cl” ratios
similar or higher than those of seawater, and relatively low
Ca?*/CI”, Mg**/ClI” and K*/CI™ ratios; i) waters from
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Sofikam and Inche MVs and the iodine production well,
which show significantly lower Na*/CI~, B/CI” and Li/Cl~
and higher Ca®*/CI~, Mg?*/Cl~ and K*/CI" ratios.

Lithium, Na and B, which tend to be enriched in low-
temperature clay minerals (Schwarcz et al. 1969; Spivack
et al. 1987; Chan et al. 2002) can enter the aqueous
media through (i) hydrothermal alteration at moderate
temperatures (around 50°C) (You et al. 1996; James et al.
2003), (ii) desorption and mineral dehydration reactions
and (iii) decomposition of organic compounds during
burial in response to increasing temperatures (James
and Palmer 2000; Williams et al. 2001; Kopf and Deyhle
2002; Kharaka and Hanor 2004; Teichert et al. 2005). An
enrichment in these elements, as shown by the
Gharenyaregh and Neftlijeh waters, is thus to be consid-
ered a common feature for oilfield brines (Bottomley
et al. 1999; Chan et al. 2002), suggesting long fluid
circulation to reach great depths. Specifically, the high
B/CI™ ratios of these waters (Supp. Table 2) were possibly
caused by the release of B due to smectite illitization,
a typical process occurring during sediment diagenesis,
in analogy to what reported for other MVs worldwide
(You et al. 1996, 2004; Williams et al. 2001; Kopf and
Deyhle 2002; Aloisi et al. 2004; Hensen et al. 2004;
Lavrushin et al. 2005; Teichert et al. 2005; Mazzini et al.
2009; Chao et al. 2011). This process is also supported by
the qualitatively-estimated scarce content of smectite
with respect to that of illite in the muds. The relatively
high Ca?* concentrations and Na* and K* depletion
characterizing the second group of waters is typically
produced by fluid interaction with igneous rocks due to
volcanic ash alteration (Gieskes et al. 1989; You et al.
2004), as also supported by experimental investigations

carried out at relatively low (70°C) temperature
(Henderson 1982). Sofikam and Inche fluids likely inter-
acted with the volcanogenic products occurring within
the shallow formations of Akchagyl and Apsheron
(Alizadeh et al. 2016). However, this process causes
a decrease in Mg?*/Cl” ratio, in contrast with the rela-
tively high Mg?*/Cl~ measured in these waters. The
opposite trend identified in waters emitted by these
MVs is apparently pointing to another process able to
control the Mg content in these waters. The presence of
minerals belonging to the chlorite-group (clinochlore),
mica and carbonate minerals recognized by XRD in the
muds, can likely be representing a potential source
of Mg?*, able to explain the high content of Mg recorded
in these waters (White 1965).

The relatively high concentrations of NH,* shown by
all the Gorgan Plain waters (19 to 310 mg/L; Supp.
Table 2) were likely caused by degradation of organic
N-bearing compounds or ion exchange processes with
the associated hydrocarbons, as also documented in
many waters associated with oilfields (Collins 1975), as
well as those discharged from Turkmenistan MVs (Oppo
et al. 2014).

Although no H,S measurements were carried out in the
present study, the occurrence of this compound in
the Gharenyaregh and Neftlijeh MVs was suggested by
the strong smell of rotten eggs detected during the geo-
chemical survey. This implies that SO,> in the MV waters
may be reduced to H,S by microbial activity, as follows
(Friedman et al. 1992):

SO2™ + 2H0 + 2Corg — H,S + 2HCOZ M

This process is also supported by the presence of mar-
casite revealed by X-ray analysis. Nevertheless, second-
ary SO,* could be produced through H,S oxidation at
relatively shallow depth.

In the 8D-H,O vs. 8'80-H,0 diagram (Figure 10),
where the local-meteoric water line (LMWL; Shamsi and
Kazemi 2014) was reported, the Gorgan Plain waters
were compared to those from Azerbaijan (Lavrushin
et al. 2015) and Turkmenistan MVs (Lavrushin et al.
2005). The Gorgan Plain waters show significant enrich-
ments in §'0 and 8D values with respect to LMWL and
seem to be aligned along an evaporation trending line.
Furthermore, the §'80 values are slightly more negative
with respect to those of Azerbaijan and Turkmenistan.
The isotopic trend depicted by the Gorgan Plain waters
is thus possibly related to an evaporation process of
seawater diluted by a relatively negative meteoric
water (with 8'80 and 8D values of ~ —12 and —80%o,
respectively). However, isotopic exchange with the mud-



80
MVs of Gorgan Plain
@ Sofikam
B Gharenyaregh $\)
% Salt lake around Gharenyaregh
4091 A Nefuii
eftlijeh 28
€ Inche
0O MVs of Azerbaijan
; <> MVs of Turkmenistan
O Seawater
=} 01 A\ Caspian Sea *’*’
> i b o
] ’Dl:l a =
~ -404
-] <&
2}
-80 4
-120 T T T T T T 1
-20 -15 -10 -5 0 5 10 15

5'%0 (%0 VSMOW)

Figure 10. 8D vs. 830 values of MV waters from Gorgan Plain,
Azerbaijan, Turkmenistan, Caspian Sea and Seawater (Lavrushin
et al. 2005, 2015) compared with the Local Meteoric Water Line
(LMWL) (Shamsi and Kazemi 2014). The dashed line refers to the
isotopic variation trend of the Gorgan Plain MVs.

hosting clay minerals (e.g. kaolinite and illite), resulting
in an '80-shift, cannot be excluded (e.g. James and Baker
1976; Horbe 2011; Skelton et al. 2019).
Temperature-dependent specific cation pairs in solution
can usefully be applied to estimate the temperature of
subsurface waters (e.g. Giggenbach 1997; Haese et al.
2006). However, the typical approach proposed by
Giggenbach (1992), based on the combined Na/K and
K/Mg geothermometer, cannot be applied due to the con-
tribution of Na and Cl from halite and/or seawater. The Mg-
Li geothermometer is considered to be able to provide
reliable temperature estimations for brines from MVs
(Lavrushin et al. 2015, Kharaka and Mariner 1989) as follows:

T°C = 2200/log (Iog((\/M_g))/Li + 5.47) ~273.15 (2)

The Mg-Li calculated temperatures range from 33°C to
40, 44°C to 53, 110°C to 117 and 129°C to 134 for
Sofikam, Inche, Gharenyaregh and Neftlijeh MVs,
respectively. Considering an average geothermal gra-
dient of 15-18°C/1000 m (Tagiyev et al. 1997) and an
average-ground temperature of 16.4°C (Kordjazi et al.
2014), these equilibrium temperatures can be attained
from 1 km for Sofikam and Inche to 6-km depth for
Gharenyaregh and Neftlijeh. Owing to Mg in the
Sofikam and Inche waters may originate from multiple
sources as well as a mixture source for waters, hence,
theoretical temperatures for these two MVs calculated
using the Mg/Li geothermometer is doubtable and
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should be considered with caution. Notwithstanding
the uncertainty of obtained temperature estimations,
the geochemical features of the Sofikam and Inche are
similar to those shown by brines recognized in the
Akchagyl and Apsheron formations during drilling for
iodine extraction at 1-km depth (Khajeh et al. 2007) and
a deep source for Gharenyaregh (Omrani and Raghimi
2018) are in agreement with the results of the Mg-Li
geothermometer.

Model and concluding remarks

Gases, waters and muds emitted from four MVs located
in the Gorgan Plain, SE Caspian Sea (lran) were col-
lected for chemical and isotopic analysis to investigate
their origin and the processes controlling their chem-
istry. Conceptual models summarizing the main find-
ings gathered from fluid geochemistry of MVs in the
Gorgan Plain are reported in Figure 11(a,b). Sofikam,
Gharenyaregh, Inche and Neftlijeh MVs have caldera-
like features and the chemical composition of light
alkanes and the isotopic values of methane indicate
thermogenic origin for the discharged gases. The
Maykop, Upper-Middle Miocene and Mesozoic deposits
may be regarded as the probable source rocks for
thermogenic gases, although the source rock/s produ-
cing thermogenic gas is still questionable due to the
complexities and ambiguities in identifying the geolo-
gical sequences beneath the Gorgan Plain.

The Na—Cl waters can be divided into two main groups:
Type 1 waters from Gharenyaregh and Neftlijeh MVs show-
ing relatively high Na*/CI~, B/CI™ and Li/CI™ ratios and low
Ca®*/CI", Mg?*/CI™ and K*/CI™ ratios, typically discharged
by MVs due to interaction with marine sediments: These
waters likely originate from the deep subsurface forma-
tions of Gorgan Plain (Mesozoic formation?). Type 2 waters
from Sofikam and Inche MVs are characterized by lower
Na*/Cl~, B/CI™ and Li/Cl” ratios and higher Ca%*/CI~, Mg?
*/CI” and K*/CI™ ratios, possibly due to interaction with
volcanic rocks and siliciclastic sediments in relatively shal-
low formations. The relatively high-estimated tempera-
tures for waters from Gharenyaregh and Neftlijeh MVs
suggest that they are fed by deep reservoirs (~6 km).

The positive §'0- and 8D-shifts measured in all the
Gorgan waters are likely caused by (i) evaporation pro-
cesses affecting seawater diluted by a meteoric compo-
nent and/or (i) isotope exchange with the mud-hosting
clay minerals.

Integration of the information gathered from the geo-
chemical data of the present study with a comprehensive
geological, geostructural and geophysical investigation is
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Figure 11. Schematic diagrams show main elements of (a) Inche and (b) Gharenyaregh MVs. The type 1 waters discharging by
Gharenyaregh and Neftlijeh MVs may have derived from deep mud-rich layers where acquired the high B concentration from clay
minerals transformation. The occurrence of a reservoir at deep layers is also testified by the presence of rock fragments belong to
Cretaceous deposits in mud breccia (Omrani and Raghimi 2018). In contrast, the type 2 waters expelling by Incheh and Sofikam MVs
may have originated from the relatively shallow reservoirs. In addition to Mesozoic deposits can be regarded as source rocks likely
generating the thermogenic gases in Gharenyaregh and Neftlijeh MVs, as they have been observed through the seismic profiles
around Gharenyaregh MV (Rezvandehy et al. 2011), the Maykop and Middle-Late Miocene sequences reported in the drilled wells
around Incheh and Sofikam MVs (adapted from logs of the drilled wells for hydrocarbon exploration and Robert et al. 2014), can be
considered as another probable source rocks.
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