927 research outputs found

    Enhancement of quantum dot peak-spacing fluctuations in the fractional q uantum Hall regime

    Full text link
    The fluctuations in the spacing of the tunneling resonances through a quantum dot have been studied in the quantum Hall regime. Using the fact that the ground-state of the system is described very well by the Laughlin wavefunction, we were able to determine accurately, via classical Monte Carlo calculations, the amplitude and distribution of the peak-spacing fluctuations. Our results clearly demonstrate a big enhancement of the fluctuations as the importance of the electronic correlations increases, namely as the density decreases and filling factor becomes smaller. We also find that the distribution of the fluctuations approaches a Gaussian with increasing density of random potentials.Comment: 6 pages, 3 figures all in gzipped tarred fil

    Variaciones anatómicas de raíces y sistema de canales radiculares, que causan fracaso endodóntico en primer y segundo molar superior permanente, encontradas con tomografía computarizada de haz cónico. Revisión de la literatura.

    Get PDF
    74 p.INTRODUCCIÓN: Los molares superiores permanentes reciben tratamientos endodónticos en forma frecuente y presentan la mayor complejidad anatómica, tanto a nivel radicular como en su sistema canalicular. El no identificarlas, repercutirá en no lograr el objetivo del tratamiento de canales radiculares, y se traducirá en un fracaso terapéutico. La tomografía computarizada de haz cónico (CBCT) presenta ventajas para detectar dichas variaciones, respecto a la radiografía retroalveolar, pues no tiene el inconveniente de la superposición de estructuras anatómicas. OBJETIVO GENERAL: Determinar las variaciones anatómicas de raíces y sistema de canales radiculares causantes de fracaso endodóntico en primeros y segundos molares superiores permanentes, encontradas con CBCT, en casos publicados en la literatura. MATERIALES Y MÉTODOS: Estudio observacional, retrospectivo y de corte transversal. Revisión bibliográfica en línea, durante el periodo marzo-agosto del año 2016. RESULTADOS: De un total de 492 artículos revisados en la literatura, se obtuvo una muestra de 16 casos. El fracaso endodóntico asociado a una variación anatómica, se presentó mayormente en primer molar superior. El 81,25% de la muestra, fueron molares con 3 raíces diferenciadas y 4 canales radiculares. La variación anatómica mayormente encontrada, fue la presencia del canal MB2, representando el 75% de los casos. También se presentaron variaciones anatómicas en los canales radiculares, por fusión de las raíces. CONCLUSIONES: El examen CBCT permite identificar variaciones anatómicas en las raíces y sistema canalicular de molares superiores. Podría utilizarse en forma previa al tratamiento inicial o ya ante la presencia de fracaso en el tratamiento endodóntico. PALABRAS CLAVE: tomografía computarizada de haz cónico, cone-beam computed tomography, CBCT, fracaso endodóntico, root canal therapy, retreatment, molar, tooth root, periapical diseases

    Human peritoneal mesothelial cell death induced by high-glucose hypertonic solution involves Ca2+ and Na+ ions and oxidative stress with the participation of PKC/NOX2 and PI3K/Akt pathways

    Get PDF
    Indexación: Web of Science; Scopus.Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.https://www.frontiersin.org/articles/10.3389/fphys.2017.00379/ful

    On the semiclassical theory for universal transmission fluctuations in chaotic systems: the importance of unitarity

    Full text link
    The standard semiclassical calculation of transmission correlation functions for chaotic systems is severely influenced by unitarity problems. We show that unitarity alone imposes a set of relationships between cross sections correlation functions which go beyond the diagonal approximation. When these relationships are properly used to supplement the semiclassical scheme we obtain transmission correlation functions in full agreement with the exact statistical theory and the experiment. Our approach also provides a novel prediction for the transmission correlations in the case where time reversal symmetry is present

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure

    Spectral fluctuations effects on conductance peak height statistics in quantum dots

    Full text link
    Within random matrix theory for quantum dots, both the dot's one-particle eigenlevels and the dot-lead couplings are statistically distributed. While the effect of the latter on the conductance is obvious and has been taken into account in the literature, the statistical distribution of the one-particle eigenlevels is generally replaced by a picket-fence spectrum. Here we take the random matrix theory eigenlevel distribution explicitly into account and observe significant deviations in the conductance distribution and magnetoconductance of closed quantum dots at experimentally relevant temperatures.Comment: 3 pages, 2 figure

    How do wave packets spread? Time evolution on Ehrenfest time scales

    Full text link
    We derive an extension of the standard time dependent WKB theory which can be applied to propagate coherent states and other strongly localised states for long times. It allows in particular to give a uniform description of the transformation from a localised coherent state to a delocalised Lagrangian state which takes place at the Ehrenfest time. The main new ingredient is a metaplectic operator which is used to modify the initial state in a way that standard time dependent WKB can then be applied for the propagation. We give a detailed analysis of the phase space geometry underlying this construction and use this to determine the range of validity of the new method. Several examples are used to illustrate and test the scheme and two applications are discussed: (i) For scattering of a wave packet on a barrier near the critical energy we can derive uniform approximations for the transition from reflection to transmission. (ii) A wave packet propagated along a hyperbolic trajectory becomes a Lagrangian state associated with the unstable manifold at the Ehrenfest time, this is illustrated with the kicked harmonic oscillator.Comment: 30 pages, 3 figure

    Semiclassical Description of Wavepacket Revival

    Get PDF
    We test the ability of semiclassical theory to describe quantitatively the revival of quantum wavepackets --a long time phenomena-- in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-dependent WKB and Van Vleck propagation. We show that both approaches describe with impressive accuracy the autocorrelation function and wavefunction up to times longer than the revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement extends to arbitrary long times.Comment: 10 pages, 6 figure

    Orthogonality Catastrophe in Parametric Random Matrices

    Full text link
    We study the orthogonality catastrophe due to a parametric change of the single-particle (mean field) Hamiltonian of an ergodic system. The Hamiltonian is modeled by a suitable random matrix ensemble. We show that the overlap between the original and the parametrically modified many-body ground states, SS, taken as Slater determinants, decreases like nkx2n^{-k x^2}, where nn is the number of electrons in the systems, kk is a numerical constant of the order of one, and xx is the deformation measured in units of the typical distance between anticrossings. We show that the statistical fluctuations of SS are largely due to properties of the levels near the Fermi energy.Comment: 12 pages, 8 figure
    corecore