423 research outputs found

    Democratization in a passive dendritic tree : an analytical investigation

    Get PDF
    One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure

    Ontogenetic Development of Neural and Muscular Rhythmic Activity and Its Regulation in Mammals during Perinatal Period

    Get PDF
    This review covers our recent advantages in studying the ontogenetic aspects of physiological mechanisms underlying regulation of rhythmic behavior. We have revealed that excitation patterns that emerged at early stages of phylogenetic development of life forms contribute greatly to the rhythmic activity of living vertebrates and invertebrates. These patterns govern spontaneous excitation, which is easily observed during the early stage of ontogenesis. The intensity and patterns of rhythmic activity are determined by nature and kinetics of certain metabolic reactions. During perinatal and sometimes postnatal periods (as in prematurely born animals), endogenic rhythmicity of developing physiological structures is strongly pronounced due to relatively stable living conditions. This rhythmic behavior is coordinated within an entire organism. Its integration in multiple systems is driven by amplitude and frequency modulation yielding rhythms of various frequency ranges. Indeed, it is the complex and conjoint functioning of physiological systems that maintains homeostasis in developing organisms. We present the results of our authentic research concerning the evolution and ontogeny of regulatory mechanisms of motor, cardiovascular, and respiratory systems. The aspects of intact and disrupted development are considered, involving the changes in dopaminergic, norepinephrinergic, and cholinergic system activation

    Association Between Genetic Variants on Chromosome 15q25 Locus and Objective Measures of Tobacco Exposure

    Get PDF
    Background: Two single-nucleotide polymorphisms, rs1051730 and rs16969968, located within the nicotinic acetylcholine receptor gene cluster on chromosome 15q25 locus, are associated with heaviness of smoking, risk for lung cancer, and other smoking-related health outcomes. Previous studies have typically relied on self-reported smoking behavior, which may not fully capture interindividual variation in tobacco exposure. / Methods: We investigated the association of rs1051730 and rs16969968 genotype (referred to as rs1051730–rs16969968, because these are in perfect linkage disequilibrium and interchangeable) with both self-reported daily cigarette consumption and biochemically measured plasma or serum cotinine levels among cigarette smokers. Summary estimates and descriptive statistical data for 12 364 subjects were obtained from six independent studies, and 2932 smokers were included in the analyses. Linear regression was used to calculate the per-allele association of rs1051730–rs16969968 genotype with cigarette consumption and cotinine levels in current smokers for each study. Meta-analysis of per-allele associations was conducted using a random effects method. The likely resulting association between genotype and lung cancer risk was assessed using published data on the association between cotinine levels and lung cancer risk. All statistical tests were two-sided. / Results: Pooled per-allele associations showed that current smokers with one or two copies of the rs1051730–rs16969968 risk allele had increased self-reported cigarette consumption (mean increase in unadjusted number of cigarettes per day per allele = 1.0 cigarette, 95% confidence interval [CI] = 0.57 to 1.43 cigarettes, P = 5.22 × 10−6) and cotinine levels (mean increase in unadjusted cotinine levels per allele = 138.72 nmol/L, 95% CI = 97.91 to 179.53 nmol/L, P = 2.71 × 10−11). The increase in cotinine levels indicated an increased risk of lung cancer with each additional copy of the rs1051730–rs16969968 risk allele (per-allele odds ratio = 1.31, 95% CI = 1.21 to 1.42). / Conclusions: Our data show a stronger association of rs1051730–rs16969968 genotype with objective measures of tobacco exposure compared with self-reported cigarette consumption. The association of these variants with lung cancer risk is likely to be mediated largely, if not wholly, via tobacco exposure

    Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment

    Get PDF
    Glioblastoma remains the most common and aggressive primary brain tumor today. Because of the neuroanatomical location of glioblastoma, conventional chemotherapy and radiation therapy have limited efficacy in patients with these tumors. Over the past decade, antitumor immunotherapy has become widespread among modern therapeutic approaches. The importance of immunotherapeutic methods lies in their ability to increase the effectiveness of cancer treatment and prevent relapses by enhancing the systemic and local immune response against tumor cells.One of the most promising directions in modern immunotherapy is CAR-T therapy, or adoptive cell therapy using genetically modified T-lymphocytes. The functional advantage of CAR-T therapy is its ability to genetically modify lymphocytes, leading to their activation in vitro.This review examines the key principles of CAR-T therapy and analyzes the published results of clinical trials for the treatment of glioblastoma using several modifications of CAR-T cells

    Combination approach to diagnosis and treatment of an elderly patient with chronic Ph-negative myeloproliferative neoplasm and concomitant surgical pathology. Clinical observation

    Get PDF
    Chronic myeloproliferative neoplasms (CMPN), Ph-negative, are of clonal nature, develop on the level of hematopoietic stem cell and are characterized by proliferation of one or more hematopoietic pathways. Currently, the group of Ph-negative CMPN includes essential thrombocythemia, primary myelofibrosis, polycythemia vera, myeloproliferative neoplasm unclassifiable.Identification of mutations in the Jak2 (V617F), CALR, and MPL genes extended understanding of biological features of Ph-negative CMPN and improved differential diagnosis of myeloid neoplasms. Nonetheless, clinical practice still encounters difficulties in clear separation between such disorders as primary myelofibrosis, early-stage and transformation of essential thrombocythemia into myelofibrosis with high thrombocytosis. Thrombocytosis is one of the main risk factors for thromboembolic complications, especially in elderly people.A clinical case of an elderly patient with fracture of the left femur developed in the context of Ph-negative CMPN (myelofibrosis) with high level of thrombocytosis is presented which in combination with enforced long-term immobilization and presence of additional risk created danger of thrombosis and hemorrhage during surgery and in the postoperative period

    THE INFLUENCE OF THERMAL REDUCTION ON THE CHARACTERISTICS OF LIGHSCRIBED GRAPHENE OXIDE HUMIDITY SENSOR

    Full text link
    Humidity sensing structures based on graphene oxide (GO) were thermally reduced to obtain GO films with different reduction degrees. Measurements of conductivity of the reduced films were made under the change of relative humidity. Different types of humidity sensing characteristics were obtained and described.Работа проведена при поддержке гранта РФФИ №15-08-01977

    Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk:a large Mendelian randomisation study

    Get PDF
    Background: Whilst observational studies establish that lower plasma 25-hydroxyvitamin D (25-OHD) levels are associated with higher risk of colorectal cancer (CRC), establishing causality has proven challenging. Since vitamin D is modifiable, these observations have substantial clinical and public health implications. Indeed, many health agencies already recommend supplemental vitamin D. Here, we explore causality in a large Mendelian randomisation (MR) study using an improved genetic instrument for circulating 25-OHD. Methods: We developed a weighted genetic score for circulating 25-OHD using six genetic variants that we recently reported to be associated with circulating 25-OHD in a large genome-wide association study (GWAS) meta-analysis. Using this score as instrumental variable in MR analyses, we sought to determine whether circulating 25-OHD is causally linked with CRC risk We conducted MR analysis using individual-level data from 10,725 CRC cases and 30,794 controls (Scotland, UK Biobank and Croatia). We then applied estimates from meta-analysis of 11 GWAS of CRC risk (18,967 cases; 48,168 controls) in a summary statistics MR approach. Results: The new genetic score for 25-OHD was strongly associated with measured plasma 25-OHD levels in 2821 healthy Scottish controls (P = 1.47 x 10(-11)), improving upon previous genetic instruments (F-statistic 46.0 vs. 13.0). However, individual-level MR revealed no association between 25-OHD score and CRC risk (OR 1.03/unit log-transformed circulating 25-OHD, 95% CI 0.51-2.07, P= 0.93). Similarly, we found no evidence for a causal relationship between 25-OHD and CRC risk using summary statistics MR analysis (OR 0.91, 95% CI 0.69-1.19, P= 0.48). Conclusions: Despite the scale of this study and employing an improved score capturing more of the genetic contribution to circulating 25-OHD, we found no evidence for a causal relationship between circulating 25-OHD and CRC risk Although the magnitude of effect for vitamin D suggested by observational studies can confidently be excluded, smaller effects sizes and non-linear relationships remain plausible. Circulating vitamin D may be a CRC biomarker, but a causal effect on CRC risk remains unproven
    corecore