192 research outputs found

    Pilot cluster randomised controlled trial of flooring to reduce injuries from falls in wards for older people

    Get PDF
    Background: falls disproportionately affect older people, who are at increased risk of falls and injury. This pilot study investigates shock-absorbing flooring for fall-related injuries in wards for frail older people.Methods: we conducted a non-blinded cluster randomised trial in eight hospitals in England between April 2010 and August 2011. Each site allocated one bay as the ‘study area’, which was randomised via computer to intervention (8.3-mm thick Tarkett Omnisports EXCEL) or control (2-mm standard in situ flooring). Sites had an intervention period of 1 year. Anybody admitted to the study area was eligible. The primary outcome was the fall-related injury rate. Secondary outcomes were injury severity, fall rate and adverse events.Results: during the intervention period, 226 participants were recruited to each group (219 and 223 were analysed in the intervention and control group, respectively). Of 35 falls (31 fallers) in the intervention group, 22.9% were injurious, compared with 42.4% of 33 falls (22 fallers) in the control group [injury incident rate ratio (IRR) = 0.58, 95% CI = 0.18–1.91]. There were no moderate or major injuries in the intervention group and six in the control group. The fall IRR was 1.07 (95% CI = 0.64–1.81). Staff at intervention sites raised concerns about pushing equipment, documenting one pulled back.Conclusions: future research should assess shock-absorbing flooring with better ‘push/pull’ properties and explore increased faller risk. We estimate a future trial will need 33,480–52,840 person bed-days per arm.Trial registration: ClinicalTrials.gov (ID: NCT00817869); UKCRN (ID: 5735)

    Influence of V5/6-His Tag on the Properties of Gap Junction Channels Composed of Connexin43, Connexin40 or Connexin45

    Get PDF
    HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/ 6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltageclamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexinspecific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) Vj-sensitive gating of Ij (Vj, gap junction voltage; Ij, gap junction current), (2) contribution and (3) kinetics of Ij deactivation and (4) single-channel conductance. The first three reflect alterations of fast Vj gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties

    Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line

    Get PDF
    The HL-1 atrial line contains cells blocked at various developmental stages. To obtain homogeneous sub-clones and correlate changes in gene expression with functional alterations, individual clones were obtained and characterised for parameters involved in conduction and excitation-contraction coupling. Northern blots for mRNAs coding for connexins 40, 43 and 45 and calcium handling proteins (sodium/calcium exchanger, L- and T-type calcium channels, ryanodine receptor 2 and sarco-endoplasmic reticulum calcium ATPase 2) were performed. Connexin expression was further characterised by western blots and immunofluorescence. Inward currents were characterised by voltage clamp and conduction velocities measured using microelectrode arrays. The HL-1 clones had similar sodium and calcium inward currents with the exception of clone 2 which had a significantly smaller calcium current density. All the clones displayed homogenous propagation of electrical activity across the monolayer correlating with the levels of connexin expression. Conduction velocities were also more sensitive to inhibition of junctional coupling by carbenoxolone (∼80%) compared to inhibition of the sodium current by lidocaine (∼20%). Electrical coupling by gap junctions was the major determinant of conduction velocities in HL-1 cell lines. In summary we have isolated homogenous and stable HL-1 clones that display characteristics distinct from the heterogeneous properties of the original cell line

    Freeze-Fracture Replica Immunolabelling Reveals Urothelial Plaques in Cultured Urothelial Cells

    Get PDF
    The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research

    Influence of V5/6-His Tag on the Properties of Gap Junction Channels Composed of Connexin43, Connexin40 or Connexin45

    Get PDF
    HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) Vj-sensitive gating of Ij (Vj, gap junction voltage; Ij, gap junction current), (2) contribution and (3) kinetics of Ij deactivation and (4) single-channel conductance. The first three reflect alterations of fast Vj gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties

    Phase 2 evaluation of parainfluenza type 3 cold passage mutant 45 live attenuated vaccine in healthy children 6-18 months old

    Get PDF
    © 2004 by the Infectious Diseases Society of America. All rights reserved.A phase 2 evaluation of live attenuated parainfluenza type 3 (PIV3)–cold passage mutant 45 (cp45) vaccine was conducted in 380 children 6–18 months old; 226 children (59%) were seronegative for PIV3. Of the 226 seronegative children, 114 received PIV3-cp45 vaccine, and 112 received placebo. No significant difference in the occurrence of adverse events (i.e., runny nose, cough, or temperature 38°C) was noted during the 14 days after vaccination. There was no difference between groups in the occurrence of acute otitis media or serous otitis media. Paired serum samples were available for 109 of the seronegative vaccine recipients and for 110 of the seronegative placebo recipients; 84% of seronegative vaccine recipients developed a 4-fold increase in antibody titers. The geometric mean antibody titer after vaccination was 1:25 in the vaccine group and <1:4 in the placebo group. PIV3-cp45 vaccine was safe and immunogenic in seronegative children and should be evaluated for efficacy in a phase 3 field trial.Robert B. Belshe, Frances K. Newman, Theodore F. Tsai, Ruth A. Karron, Keith Reisinger, Don Roberton, Helen Marshall, Richard Schwartz, James King, Frederick W. Henderson, William Rodriguez, Joseph M. Severs, Peter F. Wright, Harry Keyserling, Geoffrey A. Weinberg, Kenneth Bromberg, Richard Loh, Peter Sly, Peter McIntyre, John B. Ziegler, Jill Hackell, Anne Deatly, Alice Georgiu, Maribel Paschalis, Shin-Lu Wu, Joanne M. Tatem, Brian Murphy and Edwin Anderso

    The effect of materials' rheology on process energy consumption and melt thermal quality in polymer extrusion

    Get PDF
    YesPolymer extrusion is an important but an energy intensive method of processing polymeric materials. The rapid increase in demand of polymeric products has forced manufactures to rethink their processing efficiencies to manufacture good quality products with low-unit-cost. Here, analyzing the operational conditions has become a key strategy to achieve both energy and thermal efficiencies simultaneously. This study aims to explore the effects of polymers' rheology on the energy consumption and melt thermal quality (ie, a thermally homogeneous melt flow in both radial and axil directions) of extruders. Six commodity grades of polymers (LDPE, LLDPE, PP, PET, PS, and PMMA) were processed at different conditions in two types of continuous screw extruders. Total power, motor power, and melt temperature profiles were analyzed in an industrial scale single-screw extruder. Moreover, the active power (AP), mass throughput, torque, and power factor were measured in a laboratory scale twin-screw extruder. The results confirmed that the specific energy consumption for both single and twin screw extruders tends to decrease with the processing speed. However, this action deteriorates the thermal stability of the melt regardless the nature of the polymer. Rheological characterization results showed that the viscosity of LDPE and PS exhibited a normal shear thinning behavior. However, PMMA presented a shear thickening behavior at moderate-to-high shear rates, indicating the possible formation of entanglements. Overall, the findings of this work confirm that the materials' rheology has an appreciable correlation with the energy consumption in polymer extrusion and also most of the findings are in agreement with the previously reported investigations. Therefore, further research should be useful for identifying possible correlations between key process parameters and hence to further understand the processing behavior for wide range of machines, polymers, and operating conditions

    Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.</p> <p>Methods</p> <p>We describe two novel mutations in the connexin32 gene in two Norwegian families.</p> <p>Results</p> <p>Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands.</p> <p>The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals.</p> <p>Conclusion</p> <p>The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.</p

    Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease

    Get PDF
    BACKGROUND: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease
    corecore