296 research outputs found

    Detection of Cherenkov light from air showers with Geiger-APDs

    Full text link
    We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Integrating the Fermi Gamma-Ray Burst Monitor into the 3rd Interplanetary Network

    Full text link
    We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM, the IPN will comprise 9 experiments. This will 1) assist the Fermi team in understanding and reducing their systematic localization uncertainties, 2) reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1 to 4 orders of magnitude, 3) facilitate the identification of GRB sources with objects found by ground- and space-based observatories at other wavelengths, from the radio to very high energy gamma-rays, 4) reduce the uncertainties in associating some LAT detections of high energy photons with GBM bursts, and 5) facilitate searches for non-electromagnetic GRB counterparts, particularly neutrinos and gravitational radiation. We present examples and demonstrate the synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator project.Comment: 5 pages, 11 figures. 2009 Fermi Symposium. eConf Proceedings C09112

    Magnetostimulated Chandges of Microhardness in Potassium Acid Phthalate Crystals

    Full text link
    A decrease in microhardness along the (010) cleavage in potassium acid phthalate single crystals by 15--18% after the application of a permanent magnetic field was revealed for the first time. It is shown that the effect revealed is of the volume character. The role of interlayer water in the processes stimulated by a magnetic field is studied., Interlayer water plays does not cause the observed changes it only plays the part of an indicator of these changes in potassium acid phthalate crystals in a magnetic field. It is established that microhardness in the (100) plane of the crystal in an applied a magnetic field first increases by 12--15% and then remains constant in time within the accuracy of the experiment. The possibility of varying the crystal structure of potassium acid phthalate crystals by applying magnetic fields inducing rearrangement in the system of hydrogen bonds or in the defect structure is discussed.Comment: 6 pages, 7 figure

    The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Full text link
    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4' and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the Astrophysical Journal Supplement Series following refereeing. Figures of the localizations in Table 3 may be found on the IPN website, at ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and day of the burst, sometimes with suffixes A or

    Scintillator counters with multi-pixel avalanche photodiode readout for the ND280 detector of the T2K experiment

    Get PDF
    The Tokai-to-Kamioka (T2K) experiment is a second generation long baseline neutrino oscillation experiment which aims at a sensitive search for νe appearance. The main design features of the T2K near neutrino detectors located at 280 m from the target are presented, and the scintillator counters are described. The counters are readout via WLS fibers embedded into S-shaped grooves in the scintillator from both ends by multi-pixel avalanche photodiodes operating in a limited Geiger mode. Operating principles and results of tests of photosensors with a sensitive area of 1 mm2 are presented. A time resolution of 1.75 ns, a spatial resolution of 9.9 - 12.4 cm, and a detection efficiency for minimum ionizing particles of more than 99% were obtained for scintillator detectors in a beam test. © 2007 Elsevier B.V. All rights reserved

    The ultraluminous GRB 110918A

    Full text link
    GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19 years of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final IPN localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderare EpeakE_{peak} of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a huge isotropic-equivalent energy release Eiso=(2.1±0.1)×1054E_{iso}=(2.1\pm0.1)\times10^{54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity Liso=(4.7±0.2)×1054L_{iso}=(4.7\pm0.2)\times10^{54}erg s1^{-1}. A tail of the soft gamma-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and ISM-like circumburst environment implied. We conclude that, among multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z7.5z\sim7.5 for Konus-WIND, and z12z\sim12 for Swift/BAT, which stresses the importance of GRBs as probes of the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap

    The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs

    Get PDF
    Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal Supplement Serie
    corecore