122 research outputs found

    Data protection, safeguarding and the protection of children's privacy: exploring local authority guidance on parental photography at school events

    Get PDF
    Should parents be allowed to take photographs at school events? Media reports suggest that increasingly schools are answering no to this question, either prohibiting or imposing stringent restrictions upon such photography. The legal justifications for such restrictions are, however, unclear. Accordingly, in 2013 freedom of information requests were sent to local education authorities across England, Scotland and Wales, the aim being to determine what advice local education authorities provide to schools in relation to parental photography at school events, and to identify how education authorities’ understandings of the law influence the advice they offer. That research reveals that local education authorities’ understandings of the law vary significantly and that where authorities do not fully appreciate the extent of the legal obligations arising this may have significant repercussions for the children concerned

    Ab initio vibrations in nonequilibrium nanowires

    Get PDF
    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on a combination of density-functional theory, and nonequilibrium Green's functions.Comment: 16 pages, to appear in Progress in Nonequilibrium Green's Functions IV (PNGF4), Eds. M. Bonitz and K. Baltzer, Glasgow, August 200

    Effects of Density‐Driven Flows on the Long‐Term Morphodynamic Evolution of Funnel‐Shaped Estuaries

    Get PDF
    Subtidal flows driven by density gradients affect the tide‐averaged sediment transport in estuaries and, therefore, can influence their long‐term morphodynamic evolution. The three‐dimensional Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport modeling system is applied to numerically analyze the effects of baroclinicity and Earth\u27s rotation on the long‐term morphodynamic evolution of idealized funnel‐shaped estuaries. The morphodynamic evolution in all the analyzed cases reproduced structures identified in many tide‐dominated estuaries: a meandering region in the fluvial‐tidal transition zone, a tidal maximum area close to the head, and a turbidity maxima region in the brackish zone. As the morphology of the estuaries evolved, the tidal propagation (including its asymmetry), the salinity gradient, and the strength of subtidal flows changed, which reflects the strong bathymetric control of these systems. The comparison with barotropic simulations showed that the three‐dimensional structure of the flow (induced by density gradients) has leading order effects on the morphodynamic evolution. Density gradient‐driven subtidal flows (1) promote near‐bed flood dominance and, consequently, the import of sediment into the estuary, (2) accelerate the morphodynamic evolution of the upper/middle estuary, (3) promote a more concave shape of the upper estuary and reduce the ebb‐tidal delta volume, and (4) produce an asymmetric bathymetry and inhibit the formation of alternate bars that would form under barotropic conditions. This latter effect is the consequence of the combined effect of Earth\u27s rotation and baroclinicity

    On correlation functions of Wilson loops, local and non-local operators

    Full text link
    We discuss and extend recent conjectures relating partial null limits of correlation functions of local gauge invariant operators and the expectation value of null polygonal Wilson loops and local gauge invariant operators. We point out that a particular partial null limit provides a strategy for the calculation of the anomalous dimension of short twist-two operators at weak and strong coupling.Comment: 29 pages, 8 figure

    Limits to scale invariance in alluvial rivers

    Get PDF
    Assumptions about fluvial processes and process–form relations are made in general models and in many site‐specific applications. Many standard assumptions about reach‐scale flow resistance, bed‐material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power‐law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse‐bed and fine‐bed reaches, whose different transport regimes can be traced to the different settling‐velocity scalings for coarse and fine grains. They also help identify two end‐member sub‐types: steep shallow coarse‐bed ‘torrents’ with distinctive flow‐resistance scaling and increased entrainment threshold, and very large, low‐gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions

    A critical discussion of the physics of wood–water interactions

    Get PDF

    Precision calculation of 1/4-BPS Wilson loops in AdS(5) x S-5

    Get PDF
    We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a family of “latitudes”) in N=4 Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS5 ×S5. Supersymmetric localization provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced by the sigma-model approach. To avoid ambiguities due to the absolute normalization of the string partition function, we compare the ratio between the generic latitude and the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calculate the relevant functional determinants, that present some complications with respect to the standard circular case. After a careful numerical evaluation of our final expression we still find disagreement with the localization answer: the difference is encoded into a precise “remainder function”. We comment on the possible origin and resolution of this discordance
    • …
    corecore