30 research outputs found
Expression of the transcription factor Hes3 in the mouse and human ocular surface, and in pterygium
Purpose: In this work we examined the presence of the neural stem cell biomarker Hairy and Enhancer of Split 3 (Hes3) in the anterior eye segment and in the aberrant growth condition of the conjunctiva pterygium. Further, we studied the response of Hes3 to irradiation.
Materials and methods: Adult mouse and human corneoscleral junction and conjunctiva, as well as human pterygium were prepared for immunohistochemical detection of Hes3 and other markers. Total body irradiation was used to study the changes in the pattern of Hes3 expression.
Results: The adult rodent and human eye as well as pterygium, contain a population of cells expressing Hes3. In the human eye, Hes3-expressing (Hes3+) cells are found predominantly in the subconjunctival space spanning over the limbus where they physically associate with blood vessels. The cytoarchitecture of Hes3 + cells is similar to those previously observed in the adult central nervous system. Furthermore, irradiation reduces the number of Hes3 + cells in the subconjunctival space. In contrast, irradiation strongly promotes the nuclear localization of Hes3 in the ciliary body epithelium.
Conclusions: Our results suggest that a recently identified signal transduction pathway that regulates neural stem cells and glioblastoma cancer stem cells also operates in the ocular surface, ciliary body, and in pterygium
EVALUATION OF IRIDOCILIARY AND LENTICULAR ELASTICITY USING SHEAR-WAVE ELASTOGRAPHY IN RABBIT EYES
Introduction: A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Methods: Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Results: Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Conclusions: Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia
Laparoscopic cystectomy in-a-bag of an intact cyst: Is it feasible and spillage-free after all?
This prospective study was conducted to assess the feasibility of laparoscopic cystectomy of an intact adnexal cyst performed inside a water proof endoscopic bag, aiming to avoid intraperitoneal spillage in case of cyst rupture. 102 patients were recruited. Two of them were pregnant. In 8 of the patients the lesions were bilateral, adding up to a total of 110 cysts involved in our study. The endoscopic sac did not rupture in any case. Mean diameter of the cysts was 5.7 cm (range: 2.3-10.5 cm). In 75/110 (68.2%) cases, cystectomy was completed without rupture, whereas in the remaining 35/110 (31.8%) cases the cyst ruptured. Minimal small spillage occurred despite every effort only in 8/110 (7.2%) cases with large (>8 cm) cystic teratomas. There were no intraoperative or postoperative complications. We concluded that laparoscopic cystectomy in-a-bag of an intact cyst is feasible and oncologically safe for cystic tumors with a diameter < 8 cm. Manipulation of larger tumors with the adnexa into the sac may be more difficult, and in such cases previous puncture and evacuation of the cyst contents should be considered. © 2016 Stelios Detorakis et al
Diurnal and 24-h Intraocular Pressures in Glaucoma: Monitoring Strategies and Impact on Prognosis and Treatment
The present review casts a critical eye on intraocular pressure (IOP) monitoring and its value in current and future glaucoma care. Crucially, IOP is not fixed, but varies considerably during the 24-h cycle and between one visit and another. Consequently, a single IOP measurement during so-called office hours is insufficient to characterize the real IOP pathology of a patient with glaucoma. To date IOP remains the principal and only modifiable risk factor for the development and progression of glaucoma. Only by evaluating IOP characteristics (mean, peak and fluctuation of IOP) at diagnosis and after IOP-lowering interventions can we appreciate the true efficacy of therapy. Unfortunately, a major limiting factor in glaucoma management is lack of robust IOP data collection. Treatment decisions, advancement of therapy and even surgery are often reached on the basis of limited IOP evidence. Clearly, there is much room to enhance our decision-making and to develop new algorithms for everyday practice. The precise way in which daytime IOP readings can be used as predictors of night-time or 24-h IOP characteristics remains to be determined. In practice it is important to identify those at-risk glaucoma patients for whom a complete 24-h curve is necessary and to distinguish them from those for whom a daytime curve consisting of three IOP measurements (at 10:00, 14:00 and 18:00) would suffice. By employing a staged approach in determining the amount of IOP evidence needed and the rigour required for our monitoring approach for the individual patient, our decisions will be based on more comprehensive data, while at the same time this will optimize use of resources. The patient’s clinical picture should be the main factor that determines which method of IOP monitoring is most appropriate. A diurnal or ideally a 24-h IOP curve will positively impact the management of glaucoma patients who show functional/anatomical progression, despite an apparently acceptable IOP in the clinic. The potential impact of nocturnal IOP elevation remains poorly investigated. The ideal solution in the future is the development of non-invasive methods for obtaining continuous, Goldmann equivalent IOP data on all patients prior to key treatment decisions. Moreover, an important area of future research is to establish the precise relationship between 24-h IOP characteristics and glaucoma progression
Extraocular Muscle Volumetry for Assessment of Thyroid Eye Disease
In this study we evaluate the diagnostic accuracy of extraocular muscle volumetry in detecting thyroid eye disease and to compare the results with simple measurements of maximal medial rectus (MR) diameter
Data from: Changes in corneal biomechanical properties after long-term topical prostaglandin therapy
Objective: To compare corneal biomechanical properties, measured by a newly developed tonometer (Corneal Visualization Scheimpflug Technology?Corvis ST), in untreated primary open angle glaucoma (POAG) patients?POAG patients with long-term topical prostaglandin analog (PGA) therapy and in normal controls. Further is to investigate the potential effects of PGA on corneal biomechanics.
Methods: In this case-control study, 35 consecutive medication naïve eyes with POAG, 34 POAG eyes with at least 2 years treatment by PGA and 19 normal eyes were included. Intraocular pressure (IOP), central corneal thickness (CCT) and corneal biomechanical parameters, including deformation amplitude (DA), applanation time (AT1 and AT2), applanation length (AL1 and AL2), applanation velocity (AV1 and AV2), and peak distance and radius were measured using Corvis ST. Axial length and corneal curvature were measured with partial coherence interferometry (IOLMaster, Zeiss, Germany). General linear model analysis was performed to investigate the corneal biomechanical property changes among the normal controls, newly diagnosed POAG patients and POAG patients with long-term PGA treatment, and among the subgroups of different types of PGA treatment, including bimatoprost, latanoprost and travoprost. Furthermore, pairwise comparisons using Bonferroni correction for least squares means were employed.
Results: AT1 (p<0.0001), AV1 (p<0.0001), AT2 (p=0.0001), AV2 (p<0.0001) and DA (p=0.0004) in newly diagnosed glaucoma patients were significantly different from those in normal subjects and in patients underwent at least 2 years topical PGA therapy after adjusting for age and gender. After adjusting for age, gender, IOP, CCT, axial length and corneal curvature, a significant difference was detected for DA between glaucoma patients without PGA treatment and patients with long-term PGA therapy (p=0.0387). Furthermore, there were no statistical significant differences in all of the corneal biomechanical parameters among the 3 types of PGA therapy subgroups, namely bimatoprost, latanoprost and travoprost.
Conclusions: Significant changes in corneal deformation parameters were found among untreated POAG patients, POAG patients with long-term topical PGA therapy and normal controls. Long-term topical PGA treatment might have a direct effect on corneal biomechanical properties in addition to the indirect effect owing to the PGA-induced IOP reduction and CCT decrease on corneal dynamic properties