104 research outputs found

    IMPLEMENTATION OF GENOME-WIDE SELECTION IN WHEAT

    Get PDF
    With the expected development of thousands of molecular markers in most crops, the marker-assisted selection theory has recently shifted from the use of a few markers targeted in QTL regions (or derived from candidate or validated genes) to the use of many more markers covering the whole genome. These genome-wide markers are already used for association analysis between polymorphisms for anonymous markers and qualitative or quantitative traits. The condition for success is that a sufficient level of linkage disequilibrium (LD) exists between the adjacent markers used for genotyping and the true genes or QTLs. This LD is known to vary among species and type of genetic material. In selfing species, particularly among breeding lines, LD has been reported to range up to 1 cM or more. In such conditions, uncharacterized markers can be used to predict the breeding value of a trait without referring to actual QTLs. We present an example applying DArT markers to the INRA wheat breeding material in an attempt to implement whole genome selection as an alternative to phenotypic selection. This study assesses different models (GBLUP, Ridge Regression BLUP, Bayesian Ridge Regression and Lasso) and their ability to predict the yields of genotypes evaluated in a multi-site network from 2000 to 2009 in a highly unbalanced design. The prediction coefficients obtained by cross-validation techniques are encouraging, given the small size of the training population

    A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large number of reactions and molecular species.</p> <p>Results</p> <p>We present four techniques, derivative approximation (DA), polynomial approximation (PA), Gauss-Hermite integration (GHI), and orthonormal Hermite approximation (OHA), for <it>analytically </it>approximating the variance-based sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more difficult to implement. OHA produces the most accurate approximation results and can be implemented in a straightforward manner. It turns out that the computational cost of the four approximation techniques considered in this paper is orders of magnitude smaller than traditional Monte Carlo estimation. Software, coded in MATLAB<sup>®</sup>, which implements all sensitivity analysis techniques discussed in this paper, is available free of charge.</p> <p>Conclusions</p> <p>Estimating variance-based sensitivity indices of a large biochemical reaction system is a computationally challenging task that can only be addressed via approximations. Among the methods presented in this paper, a technique based on orthonormal Hermite polynomials seems to be an acceptable candidate for the job, producing very good approximation results for a wide range of uncertainty levels in a fraction of the time required by traditional Monte Carlo sampling.</p

    Global sensitivity analysis of stochastic computer models with joint metamodels

    Get PDF
    The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans
    • …
    corecore