4,721 research outputs found

    INVESTING IN HEALTHY CONSUMERS FOR A HEALTHY INDUSTRY

    Get PDF
    Food Consumption/Nutrition/Food Safety,

    Determination of all abstract groups of a given order

    Get PDF

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing 0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Unoccupied surface states on Pd(111) observed in very-low-energy electron diffraction and inverse photoemission: Theoretical interpretation

    Get PDF
    A three-dimensional calculation of projected electronic bulk and surface bands, spanning the energies studied by inverse photoemission and very-low-energy electron diffraction, reveals that the surface-electronic states observed by the two techniques are indeed two distinct states. We discuss their true character and the question of effective masses, and briefly comment on the validity of one-dimensional models

    Incidental finding of a microsporidian parasite from an AIDS patient

    Get PDF
    Light microscopic examination of feces from a human immunodeficiency virus-positive patient with chronic diarrhea, anorexia, and lethargy revealed the presence of numerous refractile bodies resembling microsporidian spores. They were subsequently identified as belonging to the genus Nosema on the basis of their ultrastructural characteristics. However, the microsporidia were enclosed within striated muscle cells, suggesting that they were probably ingested in food; thus, this represented an incidental finding rather than a true infection

    Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    Get PDF
    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes

    Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources

    Get PDF
    We present a method of targeted DNA sequence retrieval from DNA sources which are heavily degraded and contaminated with microbial DNA, as is typical of ancient bones. The method greatly reduces sample destruction and sequencing demands relative to direct PCR or shotgun sequencing approaches. We used this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. The mtDNA genetic diversity of the late Neandertals was approximately three times lower than that of contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes
    corecore