Southern Illinois University Edwardsville
SPARK

Determination of all abstract groups of a given order

Kenneth E. Stenzel
Southern Illinois University Edwardsville

Follow this and additional works at: https://spark.siue.edu/etd

Recommended Citation

Stenzel, Kenneth E., "Determination of all abstract groups of a given order" (1969). Theses, Dissertations, and Culminating Projects. 71.
https://spark.siue.edu/etd/71

This Thesis is brought to you for free and open access by the Graduate School at SPARK. It has been accepted for inclusion in Theses, Dissertations, and Culminating Projects by an authorized administrator of SPARK. For more information, please contact magrase@siue.edu,tdvorak@siue.edu.

DETYERMINATION OF ALL ABSTRACT GROUPS OF A GIVEN ORDER,

by
Kenneth E. Stenzel
B.A., Southern Illinois
University
Edwardsville, Illinois 1967

A Thesis
Submi.tted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
Faculty of Matheratical Studies
in the Graduate School
Southern Illinois University
(August, 1969.

SOUTHERN ILLINOIS UNIVERSITY

The Graduate School

July 16 . 1969

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY \qquad
ENTITLED \qquad Determination of A11 Abstract Groups of a Given Order

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science

Eds. 3/66

ACKNOWLEDGEMENT

The author wishes to express his appreciation to his adviser, Dr. Andrew O. Lindstrum, for his help and guidance.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT ii.
HISTORY OF ABSTRACT GROUPS 1
CHAPTER I 3
CHAPTER II 7
CHAPTER III 26
CHAPTER IV 35
CHAPIER V 41
REFERENCES 51
SELECTED BIBLIOGRAPHY 53

TABLES

Page
Table of Groups of Order p^{n}, p an Odd Prime 32
Table of Groups of Order 2^{m} 33
Table of the Number of Abstract Groups of a Given Order 45
five posetide slatrect groups of oxiler
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HISTORY OF ABSTRACT GROUPS

The theory of abstract groups of finite order may be said to date from the time of Cauchy. To him are due the first attempts at classification with a view to forming a theory from a number of isoIated facts.

While the determination of all permutation groups of given degrees was started by J. A. Serret in 1850, the determination of all abstract groups of a given order was started about four years later by A. Cayley and was called Cayley's problem.

The prototype of the abstract group is the special substitution group which is ofter called a permutation group. A considerable number of other fundamental theorems of abstract group theory were stated long before a satisfactory general definition of the term abstract group was formulated. For instance, A, Cayley determined the five possible abstract groups of order 8 before this time. It can be seen that a number of fundamental advances in abstract group theory were made by men who seemed to have confined their attention to substitution groups while developing methods which apply also to abstract groups.

It is natural that the steps toward abstract theory of groups were taken haltingly by writers who seemed often to feel insecure as regards their position, since in the early history of abstract groups, little attention was being paid by the writers on groups to the postulational definitions of the term group. Men like S. Lie (1842-1899) and F. Klein (1849-1925) continued to use the term group without
defining it except that they assumed that the product of two elements of a given group is contained therein and sometimes they assumed also the existence of the inverse of every element within the group. Even the work on finite abstract groups was done largely independently of postulates after it became known that every abstract group of finite order can be represented by one and only one regular permutation group. Abstract group theory, however, did receive more and more attention during the second half of the nineteenth century, and towards the end thereof, it became well established.

The golden age of the theory of finite groups came at the end of the last century and the first decade of the present. During this period the fundamental results of the theory were obtained, the fundamental directions of research were laid down, and the fundamental methods were created. Generally, through the work of its principal. promoters, (Frobenius, Holder, Burnside, Schur, Miller), the theory of finite groupes acquired at this time all the essential features it has at the present day.

Def. \& transitivo group whobe order fe equal to its legree in

CHAPTER I

DETERMINATION OF ALL ABSTRACT GROUPS OF A GIVEN ORDER BY REGULAR PERMUTATION GROUPS

This paper is mainly devoted to the determination of all abstract groups of a given order by utilizing the properties of conjugate sets of subgroups and Sylow theorems. However, given here is an example of determining all abstract groups of order 4 by the use of permutation theory with the necessary developement first.

Def. A permutation of a set M is a l-1 function from M onto M.

Def. The degree of a permutation group is the number of letters used in the group.

Def. A permutation group is called transitive when, by means of its permutations, a given symbol a can be changed into every other symbol $a_{2}, a_{3}, \ldots, a_{n}$ operated on by the group.

Def. A transitive group whose order is equal to its degree is called a regular permutation group.

Theorem. Every group G of finite order n can be represented as a regular permutation group on n symbols, the latter being isomorphic with G. In fact, such a representation can be set up in two ways and the two representations are distinct when G is not an abelian group.

Pf. Let $s_{1}=1, s_{2}, s_{3}, \ldots, s_{n}$ be the n elements of the Given group G_{0}. Then the n elements $s_{1} s_{i}, s_{2} s_{i}, \ldots, s_{n} s_{i}$ are all distinct and all belong to G, where it follows that they are the elements of G is some order. Then, $\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{1} s_{i}, s_{2} s_{i}, \ldots, s_{n} s_{i}}$ is a permutation s_{i} performed on the n symbols representing the elements of G. For brevity we denote S_{i} by the symbol $\mathrm{S}_{i}=\binom{s}{S S_{i}}$. The permutation $S_{i}^{-1} S_{j}$ replaces s_{i} by s_{j}. Hence, the permutation group P_{i} consisting of the permutations $S_{2}, S_{2}, \ldots, S_{n}$ is transitive. Since its order is equal to its degree, it is regular. If s_{i} is made to correspond to S_{i}, for every i, the G and P are isomorphic, since $s_{i} s_{j}$ corresponds with $S_{i} S_{j}$ as may be seen from the relations

$$
s_{i} s_{j}=\binom{s}{s s_{i}}\binom{s}{s s_{j}}=\binom{s}{s s_{i}}\binom{s s_{i}}{s s_{i} s_{j}}=\binom{s}{s s_{i} s_{j}}
$$

The process by which this representation of G has been obtained may be called post-multiplication, since in forming S_{i} we multiplied the elements of G on the right by s_{i}. If we use premultiplication and write

$$
s_{i}^{\prime}=\left(\begin{array}{cccc}
s_{1}, & s_{2} & \ldots, & s_{n} \\
s_{i}^{-1} & s_{1}, & s_{i}^{-1} & s_{2}, \ldots, s_{i}^{-1} s_{n}
\end{array}\right)=\binom{s}{s_{i}^{-1} s}
$$

then we have a permutation group P^{\prime}, consisting of the permutations $S_{1}^{1}, S_{2}^{1}, \ldots, S_{n}^{1}$. Since s_{i}^{-1} is replaced by s_{j}^{-1} in the permutation $\left(S_{i}^{\prime}\right)^{-1} S_{j}^{\prime}$, it follows that this group P ' is transitive and that also it is regular. Moreover, we have

$$
S_{i}^{\prime} S_{j}^{\prime}=\binom{s}{s_{i}^{-1} s}\binom{s}{s_{j}^{-1} s}=\binom{s}{s_{i}^{-1} s}\binom{s_{i}^{-1} s}{s_{j}^{-1} s_{i}^{-1} s}=\binom{s}{s_{j}^{-1} s_{i}^{-1} s}=
$$

$\binom{s}{\left(s_{i} s_{j}\right]^{-1} s}$
and this is the permutation corresponding to $s_{i} s_{j}$. Hence by making s_{i} and S_{i}^{1} correspond for every i, the groups G and P^{\prime} are isomorphic. Now, if $S_{i}=S_{j}^{\prime}$, we have

$$
\binom{s}{s s_{i}}=\binom{s}{s_{j}-1}
$$

where $s s_{i}=s_{j}^{-1} s$ for each elment $s \in G$. Taking s_{1} for $s_{\text {, }}$ we have $s_{i}=s_{j}^{-1}$. Hence $s s_{i}=s_{i} s$, so that s_{i} is permutable with every element of the group. From this it follows that the two representations of G are distinct, except in the case when G is an abelian group. This completes the proof.

The following notation will be used in the example:
(abcd)all represents all possible permutations on the letters a, b, c, d;
(abcd)pos represents the subgroup of (abcd)all involving only even permutations;
(abcd) 4 represents the subgroup of (abcd)all of order 4 and is non-cyclic;
(abcd)cyc represents the cyclic subgroup of (abcd)all; and
$(a b c d)_{s}$ represents the permutation group of degree 4 and order 8.

Now, according to the definition, there are 5 transitive groups of degree 4. ${ }^{1}$ These are:

$(a b c d) a l l=$	I	abc	$a b c d$	$a c$
	$a b \cdot c d$			
	$a c b$	$a d c b$	$a b$	$a c \cdot b d$

abd	acbd	$a d$
$a d \cdot b c$		
$a d b$	$a d b c$	$b c$
acd	$a b d c$	$b d$
adc	$a c d b$	$c d$
bcd		
bdc		

$(a b c d) 4=$	1	$a b \cdot c d a c \cdot b d$	$a d \cdot b c$
$(a b c d) c y c=$	1	$a c \cdot b d a b c d$	adcb

Therefore, it follows from the definition of a regular permutation group and the theorem, that (abcd)4 and (abcd)cyc are isomorphic to the two abstract groups of order 4.

CHAPIER II

THEOREMS AND DEFINITIONS FOR THE DETERMTNATION OF ALL ABSTRACT GROUPS OF A GIVEN ORDER BY FINITE GROUP PROPERTIES

The main purpose of this paper is to present arguments which take advantage of finite group properties in order to determine all abstract groups of a given order. Therefore, I will first present a body of definitions and theorems on finite groups and use standard notation except, perhaps, the use of $<>$ to denote "the group generated by".

Theorem 2. (Lagrange). If H is a subgroup of group G, then the order n of H is a factor of the order m of G. Pf. Let $t_{2}=1, t_{2}, \ldots, t_{n}$ be the n distinct elements of H_{1} and let $s_{2} \in G$ such that s_{2} / H_{0} Then, $A_{2}=$ $\left\{t_{2} s_{2}, t_{2} s_{2}, \ldots, t_{n} s_{2}\right\}$ is a set of distinct elements which are distinct from H, since if $t_{p} S_{1}=t_{q_{1}} S_{2}$ where $2 \leqslant p<q \leq n$, then $t_{p}=t_{q}$ which is contrary to assumption. Also, if $t_{p}=t_{q} s_{1}$, then $s_{1}=t_{q}^{-1} t_{p}$ and $s_{1} \varepsilon$ H which is contrary to our assumption.

$$
\text { Consider set } G-\left(H \cup A_{2}\right) \text {. Then either }
$$

$G-\left(H \cup A_{1}\right)=\varnothing$ or $G-\left(H \cup A_{1}\right)$ has more than n elements. If $G-\left(H U A_{1}\right)$ has fewer than n elements and $E_{2} \varepsilon G-\left(H \cup A_{1}\right)$, then the set of elements $A_{2}=\left\{t_{1} s_{2}\right.$, $\left.t_{2} s_{2}, \ldots, t_{n} s_{2}\right\}$ which is distinct from H and A_{2} by previous arguments and the fact that $t_{i} s_{2}=t_{i} s_{2}$ implies
$s_{2}=s_{1}$. Hence, there exists some $\left.s_{1} \in G-\left(H \cup \bigcup_{j=1}^{i-1} A_{j}\right)\right)$ such that $G=H U\left(\bigcup_{j=1}^{i} j\right)$. Hence, the order n of H is a. factor of the order m of G.

Theorem 2. If $s \in G$, the order n of s is a factor of the order n of G.

Pf. This folllows imediately from Theorem 1 and the fact that the order of ε is also the order of the cyclic subgroup of G gererated by s.

Theorem 3. If G is a group and H is a closed subset of G, then H is a subgroup of G.

Pf. Let $a_{2}, a_{2}, \ldots, a_{n}$ be the n distinct elements of HCG where these elements are closed under the internal law of composition - of G. But $l \in H$ since for every $a_{j} \in H$ there exists positive integer n_{j} such that $a_{j}^{n_{i}}=1$. Also, $a_{j}^{n_{j}-2} \cdot a_{j}=1$ where $a_{j}^{n_{j}-}, a_{j} \varepsilon$ H. Consequently, H is a subgroup of G.

Theorem 4. The elements common to a family of groups γ, form a group G whose order is a factor of the order of every PEY.

Pf. Clearly, $\bigcap \gamma=G$ is a finite set. Suppose s, tsG. Then, $s, t \in P$ for every Pey which implies steG. Hence, GCP is a subgroup of every $P \varepsilon \gamma$ by Theorem 3. Consequently, the order of G is a factor of the order of every Per by Theorem 1.

Def. I. Let G be a group, let $a, b \in G$, and let H, K be subBroups of G. Then
(1) a and b are permutable if and only if $\mathrm{ab}=\mathrm{ba}$;
(2) a and H are permutable if and only if $\mathrm{aH}=\mathrm{Ha}$; and
(3) H and K are permutable if and only if every element of H is permutable with K and every element of K is permutable with H .

Def. 2. Let G be a group. Two elements $a, b \in G$ (two subgroups H, K of G) are conjugate in G if and only if there exists an inner automorphism α on G such that $a \alpha=$ b ($\mathrm{H} \alpha=\mathrm{K}$). The set of all distinct $\mathrm{a} \alpha(\mathrm{H} \alpha$), for all inner automorphisms α of G is called a complete set of conjugate elements (subgroups).

Def. 3. In a group G, a subgroup H is called self-conjugate if and only if for every $a c G, a^{-1} \mathrm{Ha}=\mathrm{H}$.

Theorem 5. The elements of a group G, which are permutable with a given element a, form a subgroup HCG. Also, the order of G divided by the order of H is the number of elements conjugate to a.

Pf. Let $H=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ denote all distinct elements of G permutable with a. Then for $t_{1}, t_{2} \varepsilon H$, $t_{1} a=a t_{1}$ and $t_{2} a=a t_{2}$. Thus, $t_{1} t_{2} a=t_{1}\left(t_{2} a\right)=$ $\left(t_{1} a\right) t_{2}=a t_{1} t_{2}$ which implies that $t_{1} t_{2} \varepsilon H$ and that H is closed. Hence, H is a subgroup of G by Theorem

3.

Suppose min is the order of G. Then for $E_{1} \varepsilon G$, $t_{1} s_{1}, t_{2} s_{1}, \ldots, t_{n} s_{1}$ all transform a into the sanie conjugate, a^{\prime}, since $\left(t_{i} s_{1}\right)^{-1} a\left(t_{i} s_{1}\right)=s_{1}^{-1} t_{i}^{-1} a t_{i} s_{1}$ $=s_{1}^{-1}\left(t_{i}^{-1} t_{i} a\right)_{S_{1}}=s_{1}^{-1} a s_{1}$ for all $t_{i} \varepsilon H$. Also, the elements $t_{1} s_{1}, t_{2} s_{2}, \ldots, t_{n} s_{1}$ are the only elements of G which transform a into a^{\prime}, since for $\mathrm{E}_{2} \varepsilon G, \mathrm{E}_{2}{ }^{\mathrm{F}}$ $s_{1}, s_{2}^{-1} t_{i} s_{2}=t_{i}^{\prime}$ iruplies $s_{1} s_{2}^{-1} t_{i} s_{2} s_{1}^{-1}=s_{1} t_{i}^{\prime} s_{1}^{-1}=t_{i}$ and therefore $E_{2} 5_{1}^{-1} \varepsilon H$. Consequently, since we have melements for G with every $t_{i}{ }^{s} j$ distinct for $j=$ $1,2, \ldots, m$, then we have m distinct sets of n elements each of which maps a into in distinct conjugates.

Theorem 6..The elements of a group G which are permutable with a subgroup H form a subgroup I, which is either identical with H or contains H as a self-conjugate subgroup. The order of G divided by the order of I is the number of subgroups conjugate to $\mathrm{H}_{0}{ }^{2}$

Theorem 7. The elements common to a complete set of conjugate subgroups form a self-conjugate subgroup.

Pf. Let $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a complete set of conjugate subgroups of group G. Also, let $I=\bigcap_{i=1}^{n} H_{i}$. Clearly, I $\neq \varnothing$. Suppose $t_{1}, t_{2} \varepsilon I$. Then $t_{1}, t_{2} \varepsilon H_{i}$ for every 1 which implies that $t_{1} t_{2} \varepsilon I$. Hence, I is a subgroup of G by Theorem 3 .

Also, I is a self-conjugate subgroup of G since the set of conjugate subgroups when transformed by any element of G is changed into itself where I is the common subgroup of the set.

Theorem 8. (Corollary). The elements permutable with each of a complete set of conjugate subgroups form a selfconjugate subgroup.

Pf. This follows immediately from Theorem?, since the elements permutable with a subgroup H CG form a subgroup ICG by Theorem 5. Also, the elements permutable with every subgroup of the conjugate set to which H belongs are the elements common to every subgroup of the conjugate set to which I belongs.

Theorem 9. If $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ is a complete set of conjugate elements of G, then the group $\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle$, if it does not coincide with G, is a self-conjugate subgroup of G, and it is the self-conjugate subgroup of mallest order which contains t_{1}.

Pr. Suppose $H=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ is a complete set of conjugate elements of group G. Let H_{1} be any self-conjugate subgroup of G which contains t_{1}. But for every $s \varepsilon G, s^{-1} H_{2} s=H_{1}$. Hence, $H_{1}>H$.

Suppose H_{2} is the group generated by H. Let
$z E H_{2}$ Then $z=x_{1} x_{2} \cdots x_{k}$ where $x_{j}=t_{i}$ or $x_{j}=t_{i}^{-1}$ for some i. Let $s \in G$. Then, $s^{-1} z s=s^{-1} x_{1} s s^{-1} x_{2}{ }^{5} \ldots$
$s^{-1} x_{k} s$. Now, $w=s^{-1} x_{j} s=s^{-1} t_{j} s=t_{u}$ for some u or $s^{-1} t_{j}=s^{-1} t_{j}^{-1} s=\left(s^{-1} t_{j} s\right)^{-1}=t_{v}^{-1}$ for some v. Hence, $w \in H_{2}$ and $z \varepsilon \mathrm{H}_{2}$. Consequently, H_{2} is a selfconjugate subgroup which contains t_{1} since H_{2} is generated by H .

Theorem 10. If an element s of order n is permutable with a group G and if s^{m} is the lowest power of s which occurs in G, then m is a factor of n and n / m is a factor of the order of $G_{0}{ }^{3}$

Theorem 21. If every element of G transforms H into itself and every elenent of H transforms G into itself, and if G and H have no common element except 1 , then every element of G is permutable with every element of $\mathrm{H}_{0}{ }^{4}$

Def. 4. A group G is simple if and only if no proper subgroup is self-conjugate.

Theorem 12. (Corollary). If every element of G transforms H into itself and every element of Hitransforms G into itself, and if either G or H is a simple group, then G and H have no common elements except 1 and every element of G is permutable with every element of H. Pf. Suppose H and G are groups such that $g^{-1} H g$ $=H$ for every $g \varepsilon G$ and $h^{-1} G h=G$ for every $h \varepsilon H$ where Hi is a simple group. Consider the element $z=g^{-1} h^{-1}$ gh. Then $\left(g^{-1} h^{-1} g\right) h \varepsilon H$ and $g^{-1}\left(h^{-1} g h\right) \varepsilon G$. Suppose $z \neq 1$. Then $G C H$ is a subgroup of G and also of H,
and contains more than 1. If $\mathrm{G} \subset \mathrm{H}$ or HCG , we are done.

Suppose $G \not \subset H$ and $H \not \subset G$. Then $G \cap H$ is a proper subgroup of $\mathrm{H} . \mathrm{Clearly}, \mathrm{G} \cap H$ is a self-conjugate subgroup of $\langle G, H\rangle$ since every element of $G \cap^{H}$ is permutable with the elements of GUH. Contradiction. Hence, $G \cap H=1$ and by Theorem II, every element of G is permutable with every element of H.

Theorem 23. If p is a prime and if p^{m} is less than and divides the order of a group G, then G has at least one subgroup, distinct from itself, whose order is divisible by $p^{m} .5$

Theorem 14. (Corollary). If p^{m} divides the order of a group G, then the group has at least one subgroup of order p^{m} 。

Pf. This follows immediately from Theorem 13 and the fact that if a group has a proper subgroup whose order is divisible by p^{m}, then this subgroup will have a proper subgroup whose order is divisible by p^{m} until this process terminates in a subgroup of G of order p^{m}.

Theorem 15. (Cauchy). If p, a prime, divides the order of a group, then the group has elements of order p.

Pf. This follows inmediately from Theorem 14 and the fact that a cyclic subgroup of order p is generated by an element of order p.

Theorem 16. The number of elements of a group of order m, whose $\mathrm{n}^{\text {th }}$ powers belong to a given conjugate set is zero or a multiple of the highest common factor of n and $n .{ }^{6}$

Theorem 17. (Corollary). If n is a factor of m, the order of G, then the number of elements of G satisfying the reLation $s^{n}=1$ is a multiple of n.

Pf. This follows inmediately from Theorem 16 if we consider the fact that all the elements of G belonging to the conjugate set of 1 is m where $s^{n}=1$ and the fact that $(n, m)=n$.

Theorem 18. (Corollary). If $n=p_{1}^{\alpha_{1} \alpha_{2}} \cdots p_{j}^{\alpha_{j}}$ is a factor of $n=p_{2}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$ and if the number of elements of G; of order m, which satisfy the relation $s^{n}=1$ is equal to n_{8} then either $\alpha_{1}=\beta_{1}$ or G nust contain elements of order $p_{1}^{\alpha_{1}+1}$.?

Theorem 29. (Corollary). If a group of order min, where $(m, n)=$ 1 contains a self-conjugate subgroup of order n, then the group contains just n elements whose orders divide n .

Pf, Let G be a group of order min where $(m, n)=$ 1. Suppose G contains a self-conjugate subgroup of order n, H. Let $\varepsilon \& \in H, s \in G$ be an element whose order divides n. Then the group $H_{1}=\langle H, s\rangle$ would have by Theorem 17 and Theorem 18, an order which is a
multiple of n greater than 1 and which would be relatively prime to mn . But, H_{1} is a subgroup of G and this would contradict Theorem 1. Hence, G contains just n elements whose orders divide n.

Theorem 20. (Corollary). If G has a self-conjugate subgroup $H:$ of order m, where $(m, n)=1$, and if H has a selfconjugate subgroup K of order n, then K is a selfconjugate subgroup of G.

Pf. This follows immediately from Theorem 19, since H contains just n elements whose orders divide n, (mainly those of K), and since every element of G, since it transforms H into itself, must transform K into itself.

Def. 5. If s and t are any two elements of a group, then the element $s^{-1} t^{-1}$ st is called a commutator.

Def. 6. The group generated by the commutators of a group G is called the commutator subgroup or the derived group of G.

Def. 7. The derived group H has itself a commutator subgroup or derived group, which may or may not coincide with H. Suppose now that starting with a given group G, of finite order, G_{1} is the derived group of G, and actually distinct from it. G_{2} is the derived group of G_{1} and actually distinct from it and so on. Since the order of each of these
groups is less than the preceding, the series must terminate. This may happen in one of two ways. We may either arrive at a group which is identical with its derived group, or we may arrive at an abelian group, whose derived group is $\{1\}$. In the case the derived series terminates in \{1\}, then G is solvable.

Theorem 21. The derived group of G is that self-conjugate subgroup H of smallest order such that the quotient group G/H is abelian.

Pf. See Burnside, section 39 and add the following argument to the last statement of the proof: Suppose heH', then sht $=$ ths. Thus, sht $=t t^{-1} h_{1} t_{s}$ where $h_{1} \varepsilon H^{\prime}$. Hence, sh $=h_{1} t s t^{-1}$ and shs ${ }^{-1}=$ $h_{1} t s t^{-1} s^{-1}$ where shs $s^{-1} \varepsilon H!$. Consequently, for $s, t \in G$, all elements of the form tst ${ }^{-1} \mathrm{~S}^{-1}$, i.e., commutators are in H^{\prime}.

Theorem 22. If K is a self-conjugate subgroup of G, and if G / K is a solvable group with i terms in its derived series, then K contains G_{i}, the $i^{\text {th }}$ derived group of G and does not contain $G_{i-1} .^{8}$

Theorem 23. If H is any self-conjugate subgroup of group G_{*} and if K, K^{\prime} are two self-conjugate subgroups of G contained in H; such that there is no selfconjugate subgroup of G contained in H and con-

> taining either K or K^{\prime} except H, K and K^{\prime} themselves, and if L is the greatest common subgroup of K and K^{\prime}, so that L is necesserily self-conjugate in G, then the groups H / K and K^{\prime} / L are isomorphic as also the groups H / K^{\prime} and K / L.

Def. 8. If G_{1}, a self-conjugate subgroup of G is such that the group $<G_{1}, t_{1}, t_{2}, \ldots, t_{k}>$ coincides with $G_{,}$ when $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ is any complete set of conjugate elements not contained in G_{2}, then G_{2} is said to be a maximum self-conjugate subgroup of G. If H is a subgroup of G, and if, for every element scG which does not belong to H_{8} the group $\langle\mathrm{H}, \mathrm{s}\rangle$ coincides with G, H is said to be a maximum subgroup of G.

A minimum self-conjugate subgroup and mininum subgroup are defined similarly.

Theorem 24. (Corollary). If H coincides with G, and K and K ' are maxinum self-conjugate subgroups of G and L is the greatest group common to K and K^{\prime}, then G / K and K^{\prime} / L are isomorphic, as also are G / K and K / L.

Pf. This follows from Theorem 23 and the fact that G / K and G / K^{\prime} are simple groups which implies that K / L and K / L are simple groups such that L must be a maximum self-conjugate subgroup of both K and K^{\prime}.

Def. 9. Let G_{1} be a maximum self-conjugate subgroup of a given group $G_{3} G_{2}$ a maximum self=conjugate subgroup of G_{1} and so on. Since G is a group of finite order, ve must, after a finite number of subgroupe, arrive in this way at a subgroup G_{n-1}, whose only self-conjugate subgroup is that formed of the identity alone, so that G_{n-1} is a simple group. The series of groups obtained in this manner is called a composition series of G. The set of groups G / G_{i}, $G_{1} / G_{2}, \ldots, G_{n-2} / G_{n-1}, G_{n-1} / G_{n}$ is called a set of quotient groups of G, and the orders of these groups are said to form a set of composition-factors of G .

Def: 10.. Suppose that a series of groups, each contained in the previous one, $G, H_{2}, H_{2}, \ldots, H_{n-1},\{1\}$ are chosen so that each one is a self-conjugate subgroup of G, while there is no self-conjugate subgroup of G contained in any one group of the series and containing the next group. The series of groups obtained in this manner just described is called a chief-composition series of G.

Theorem 25. Any two composition series of a group consist of the same number of subgroups, and lead to two sets of quotient groups which, except as regards the sequence in which they occur, are identical with each other. ${ }^{10}$

Def. 11. The group G is the direct product (or direct Eum if the law of composition is addition) of its subgroups $H_{1}, H_{2}, \ldots, H_{n}$ if and only if
(1) The subgroups $H_{2}, H_{2}, \ldots, H_{n}$ are self-conjugate subgroups of G;
(2) G is generated by the subgroups $H_{1}, H_{2}, \ldots, H_{n}$; and
(3) The common part of each H_{i} with the subgroup H_{i}^{\prime}, generated by all the H_{j}, $i \neq j$, is $\{I\}$.

Theorem 26. Any two chief composition series of a group consist of the same number of terms and lead to two sets of quotient groups, which, except as regards the sequence in which they occur, are identical wi.th each other.

Pf. This theorem follows immediately by a repetition of the same arguments of Theorem 23.

Theorem 27. If between two consecutive terms H_{r} and H_{r+1} in the chief-composition series of a group there occur the groups $G_{r, 1}, G_{r, 2}, \ldots, G_{r, s-1}$ of a composition series, then (i) the quotient groups $H_{r} / G_{r, 1}$, $G_{r, 1} / G_{r, 2}, \ldots, G_{r, s-1} / H_{r+1}$ are all isomorphic, and (ii) H_{r} / H_{r+1} is the direct product of s groups of the type $H_{r} / G_{r, 1}$. 11

Theorem 28. (Corollary). If the order of $\mathrm{H}_{r} / \mathrm{H}_{r+1}$ is a power, p^{5}, of a prime, $\mathrm{H}_{r} / \mathrm{H}_{r+1}$ must be an abelian group whose elements, except 1, are all of order p.

Pf. This theorem follows from arguments used in proof of Theorem 27.

Theorem 29. If H is a subgroup of G each composition factor of H must be equal to or be a factor of some composition factor of $G_{0}{ }^{12}$

Theorem 30. (Corollary). If all composition factors of group G are primes, so also are the composition factors of every subgroup of G.

Pf. This is an immediate consequence of Theorem 29.

Theorem 31. A solvable group, the composition factors of which may be taken in any order, is the direct product of groups whose orders are powers of primes. ${ }^{13}$

Theorem 32. An abelian group G of order $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{\lambda}} \cdots p_{n}^{\alpha_{n}}$, where p_{1}, p_{2}, \ldots, p_{n} are distinct primes, is the direct product of groups P_{i} formed of all elements of G whose orders divide $p_{i}^{\alpha_{i}}$ where p_{i} is of order $p_{i}^{\alpha_{i}} 14$

Theorem 33. The elements of an abelian group, whose order is a power of p, can always be represented in the form $q_{1}^{x_{1} x_{2}} \ldots q_{s}^{x_{s}},\binom{x_{i}=0,1, \ldots, p^{m i}-1}{i=1,2, \ldots, s}$, where the elements $q_{1}, q_{2}, \ldots, q_{s}$ are related by $q_{i}^{p^{m} i}=1$, $q_{i} q_{j}=q_{j} q_{i},(i, j=1,2, \ldots, s)$ and by no others. 15

Theorem 34. The number of distinct types of abelian groups of
order p^{n}, where p is a prime, is equal to the number of partitions of m, and each type may be completely represented by the symbol ($m_{2}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{B}}$) of the corresponding partition. If the numbers in the partition are written in descending order, a group of the type $\left(m_{2}, m_{2}, \ldots, m_{8}\right)$ will have a subgroup of the type ($n_{1}, n_{2}, \ldots, n_{t}$) when the conditrons $t=s_{i} n_{i}=m_{i}(i=1,2, \ldots, t)$ are satisfiod, and the type of every subgroup must satisfy these conditions. ${ }^{16}$

Theorem 35. Every group whose order is the power of a prime contains self-conjugate elements other than 1. and no such group can be simple. ${ }^{17}$

Theorem 36. A group whose order is the power of a prime is necessarily distinct from its derived group, and its series of derived groups terminates with the one containing 1 only. 18

Theorem 37. If G_{s} of order p^{6} is a subgroup of G, which is of order p^{m}, then G must contain a subgroup of order $p^{s+t}, t<\lambda$, within which G_{s} is self-conjugate. In particular, every subgroup of order $p^{n /-1}$ of G is a self-conjugate subgroup. ${ }^{19}$

Theorem 38. (Lemma 1). If a group G is of order p^{m}, then the number of subgroups of G of order p^{m-1} is r_{n-1} where $r_{m_{2}-1} \equiv 2(\bmod p) .{ }^{20}$

Theorem 39. (Lemma 2). If a group G is of order p^{m}, then the number of subgroups of G of order p is r_{1} where $r_{1} \equiv I(\bmod p) .^{21}$

Theorem 40. The number of subgroups of any given order p^{s} of a group G of order p^{m} is congruent to $I(\bmod p)$.

Pf. If now G_{s} is any subgroup of G of order p^{5}, and if G_{S+t} is the greatest subgroup of G in which G_{s} is contained self-conjugately, then every subgroup of G in which G_{S} is contained self-conjugatlely is contained in G_{B+t}. But every subgroup of order p^{s+1}, which contains G_{s}, contains G_{s} selfconjugately. Therefore every subgroup of order p^{5+1} which contains G_{G} is itself contained in G_{S+t}. Hence, by Lenma 1, the number of subgroups of G_{s+t} / G_{s} of order p is congruent to $1(\bmod p)$. Thus, the number of subgroups of G of order p^{s+1}, which contain G_{s} of order p^{5}, is congruent to I (mof p).

Now, let r_{s} represent the total number of subgroups of order p^{5} contajned in a subgroups of order p^{6+1}, and if any one of the subgroups of order p^{s+1} contains b_{y} subgroups of order p^{6}, then

$$
\sum_{x=1}^{x=r} a_{x}=\sum_{y=1}^{y=r} b_{y}
$$

for the nuxbers on either side of this equation
are equal to the number of subgroups of order p^{s+1} when each of the latter is reckoned once for every
subgroup of order p^{5} which it contains. It has, however, been shown that for all values of x and y

$$
a_{x} \equiv 1, \quad b_{y} \equiv 1(\bmod p) \text { by Lemmal } 1
$$ Hence, $r_{s} \equiv x_{s+1}(\bmod p)$. Also, $r_{1} \equiv 1$ and $r_{m-1} \equiv 1(\bmod p)$ by Lemmas 1 and 2 . Therefore, for all values of $s, r_{B} \equiv 1(\bmod p)$.

Theorem 41. (Corollary). The number of self-conjugate subgroups of order p^{5} of a group of order p^{m} is congruent to $2(\bmod p)$.

Pf. This follows immediately from Theorem 6 and Theorem 40, since the number of subgroups in any conjugate set is a power of p.

Theorem 42. If G, of order p^{m}, where p is an odd prime, contains only one subgroup of order p^{3}, then G must be cyclic. ${ }^{22}$

Theorem 43. If a group G, of order 2^{m}, has a single subgroup of $2^{6},(s>1)$, it must be cyclic. If it has a single subgroup of order 2 , it is either cyclic or of the type defined by $p^{2^{n-1}}=1, q^{2}=p^{2^{m-2}}, q^{-1} p q=p^{-1}$ $(m>2) .{ }^{23}$

$$
\begin{aligned}
& \text { Def. 12. The set } N=\{x: x \in G, x a=a x\} \text { of group } G \text { is a } \\
& \text { subset of } G \text { called the normalizer of a\&G. }
\end{aligned}
$$

Theorem 44. The normalizer N of aعG is a subgroup of G. Pf. Since $a \varepsilon N, N$ is nonempty. Let $x, y \in N$. Since
$y a=a y$, upon multiplying on the left by y^{-1}, we have $a=y^{-1}$ ay and then upon multiplying on the right by y^{-1}, we have $a y^{-1}=\mathrm{y}^{-1}$ a. Therefore $\mathrm{y} \in \mathrm{N}$ implies $y^{-1} \varepsilon N_{0}$ Also, $1 \in N_{0}$

Now, $(x y)_{a}=x(y a)=x(a y)=(x a) y z(a x) y=$ $a(x y)$. Hence, $x y \in N$. Consequently, N is a subgroup of G.

Def. 13. (Sylow). Let G be a finite group of order n and Let $p \in Z^{+}$, where p is a prime. Further, Iet p^{m} be the highest power of p which divides n. Then a subgroup Hiof G is a Sylow suberoup if and only if the order of H is p^{71}.

Theorem 45. Lot G be a finite group of order n and p be a positive prime dividing n, then G has at least one Sylow subgroup of onder p^{m}. 2.4

Theorem 46. Let G be a group of order n and p be a positive prime such that $p^{m i n}$ is the highest power of p dividing n. Then the Sylow subgroups of order p^{m} form a complete set of conjugate subgroups, and the number is congruent to $1(\bmod p) .25$

Theorem 47. There is only one Sylow subgroup H of order p^{n} of H if and only if H is a self-conjugate Sylow subgroup of G.

Pf. This follows imediately from Theorem 46, since the only subgroup of a conjugate set implies
that the subgroup is self-congugate and since every Sylow subgroup of a given order belongs to a conjugate set of Sylow subgroups of the same order.

Theorem 48. If every Sylow subgroup of a group G is iselfeconjugate, then G is the direct product of its Sylow subgroups.

Pf. This follows immediately from Theorem 47 and Definition 11 since (1) and (3) are obvious and (2) follows from the fact that if $a \in G$, then $a=p_{2}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$ where $\left\{p_{2}, p_{2}, \ldots, p_{n}\right\}$ is the set of distinct primes dividing the order of G. But every Sylow subgroup of G of order $p_{i}^{q i}$ contains elements of order p_{i}. Hence, a is generated by powers of these elements from Sylow subgroups of G.

Theorem 49. Let p^{α} be the highest power of a prime p which divides the order G, and let H be a subgroup of G of order p^{α}. Let h be a subgroup common to H and some other subgroup of order p^{α}, such that no subgroup, which contains h and is of greatest order, is common to any two subgroups of order p^{α}. Then there must be some element of G, of order prime to p, which is permutable with h and not with $H_{0}{ }^{26}$

DETERMINATION OF ABSTRACT GROUPS WHOSE ORDERS ARE THE POWERS OF A SINGLE PRIME
I. $(p \neq 2)$. I shall now proceed to discuss, in application of the foregoing theorems, the various types of groups of order p^{m}, which contain self-conjugate cyclic subgroups of order $p^{\mathrm{m}-1}$ or $\mathrm{p}^{\mathrm{m}-2}$, etc. It is clear from Theorem 43 that the case $p=2$ requires independent investigation. Hence, at the moment I will deal with the case where p is an odd prime in determining all non-abelian groups of order p^{m}.
(i) First consider a group G of order p^{m}, which contains an element q of order p^{m-1}. The cyclic subgroup $\langle q\rangle$ is self-conjugate and contains a single subgroup $\left\langle\mathrm{q}^{\mathrm{m}-2}>\right.$ of order p . By Theorem 42, since G is not cyclic, it must contain an element s, of order p, which does not occur in $\langle q\rangle$. Since $\langle q\rangle$ is self-conjugate and G is not abelian, s must transform q into one of its own powers. Hence, $s^{-1} q s=q^{\alpha}$, and since s^{p} is permutable with q, it follows that $\alpha=1+\mathrm{kp}^{\mathrm{m}-2}$. 27

Since G is not abelian, $k \neq 0$. But it may have any value from 1 to $p-1$. If now $k x \equiv 1(\bmod p)$, then $s^{-x} q s^{x}=q^{1+p^{m-2}}$, and therefore writing t for s^{x}, the group is defined by

$$
q^{p^{m-1}}=1, \quad t^{p}=1, \quad t^{-1} q_{q}=q^{1+p^{m-2}} .
$$

These relations are clearly self-consistent and they define a group of order p^{m}. There is therefore a single type of nonabelian group of order p^{m} which contains elements of order p^{m-1}, because for
any such group, a pair of generating elements may be chosen which satisfy the above relations.
(ii) Suppose next that G, a group of order p^{m}, has a selfconjugate cyclic subgroup $\left\langle q>\right.$ of order $p^{\mathrm{nl}-2}$, and that no element of G is of higher order than p^{m-2}. Then three cases may be distinguished at once for separate discussion, according as q is selfconjugate, one of p conjugate elements or one of p^{2} conjugate elements. Taking the first case, there can be no element seG such that $s^{p^{2}}$ is the lowest power of $s \in\langle q\rangle$, for if there were, $\langle E, q\rangle$ would be abelian, and its order being p^{m}, it would necessarily coincide with G. Hence any element $s z^{\prime}<q>$ with q generates on abelion group of type $(m-2,1)$, and we may choose q and t as independent generators of this subgroup, the order of t being p. If now $r \in G$ and $r \ell<t, q\rangle$, then $\langle r, q\rangle$ is again an abelian group of type $(m-2,1)$, If q and r are independent generators of this group, the latter cannot occur in $\langle t, q\rangle$. Now, since t is not self-conjugate, $r^{-1} \mathrm{tr}=$ $t_{q}{ }^{\beta}$, and since r^{p} or l is permutable with t, then $q^{p^{\beta}}=1$, so that $\beta \equiv O\left(\bmod p^{m-3}\right)$. Hence, $r^{-1} t r=t q^{k p^{m-3}}$, where k is not a nultiple of p. If finally q^{k} be taken as a generating element in the place of q, the group is defined by

$$
\begin{aligned}
& q^{p^{t i-2}}=1, \quad t^{p}=1, \quad r^{p}=1, \quad r^{-1} t r=t q^{p^{m-2}}, \quad q t=t q \\
& q r=r q .
\end{aligned}
$$

There is therefore a single type of group of order p^{m}, which contains a self-conjugate element of order $p^{\text {mi-2 }}$ and no element of order $p^{\mathrm{m}_{1}-1 \text {. }}$

Next, let q be one of p conjugate elements. These must be $q^{1+k p^{m-3}},(k=1,2, \ldots, p) 0^{28}$ If $G /<q>$ is cyclic, let s be on
element, the lowest power of which in $\langle q\rangle$ is $s^{p^{2}}$. If s were permutable with q, G would be abelian. Hence, we may take $s^{-1} q s=q^{1+p^{m-3}}$ while $s^{p^{2}}=q^{k p^{2}}$. These relations give $\left(s q^{x}\right)^{p^{2}}=q(x+k) p^{2}$. Hence, if $s q^{-k}=t$, the group is defined by

$$
q^{p^{m-2}}=1, \quad t^{p^{2}}=1, \quad t^{-1} q t=q^{1+p^{m-3}},
$$

and there is a single type.
If $G /<q>$ is non-cyclic, G must contain a subgroup of order p^{m-1} in which q is self-conjugate and another in which q is one of p conjugate elements. The former is an abelian group of type ($m-2$, 2) of which q and r may be taken as independent generating elements. The latter is a group of the type considered in (i), (with m - for m), defined by

$$
{ }_{q^{p}} \mathrm{p}^{\mathrm{m}-2}=1, \quad t^{p}=1, \quad t^{-1} q t=q^{1+p^{m-3}}
$$

With this group r is permutable and therefore r^{-1} tr $=t^{\alpha}{ }_{q}{ }^{\beta p^{m-3}}$, since the only elements of order p in $\langle q, t\rangle$ are of this form by (i).

Now, $r^{-1} t^{-1} q t r=q^{1+p^{m-3}}$ or $t^{-\alpha} t^{\alpha}=q^{1+p^{m-3}}$, and therefore $\alpha=$ 1. Also, $q^{-1} t q=\operatorname{tq}^{-p^{m-3}}$, hence $q^{-\beta} r^{-1} \operatorname{trq}{ }^{\beta}=t$, and $r q^{\beta}$ is an element of order p^{m-2}, and by assuption the group has no self-conjugate element of order p^{m-2}. Hence, β must be a multiple of p and r is a self-conjugate element. Again there is one type defined by

$$
\begin{gathered}
q^{p^{m i-2}}=1, \quad t^{p}=1, \quad r^{p}=1, \quad t^{-1} q t=q^{1+p^{p i-3}}, \\
r^{-1} q r=q, \quad r^{-1} t r=t .
\end{gathered}
$$

It is the direct product of $\langle r\rangle$ and $\langle q, t\rangle$.
Lastly, let q be one of p^{2} conjugate element. There must be $q^{1+k p^{m-4}}\left(k=1,2, \ldots, p^{2}\right)$ such elements. ${ }^{29}$ This case can only occur if $m>4$. The order of an element which transforms q into $q^{1+p^{m-4}}$
must be equal to or a multiple of p^{2}. If there were no elements o of order p^{2} effecting the transformation, every element of the group not belonging to $\langle q\rangle$ would be of order p^{2} or greater, and the group would only have one subgroup of order p. Hence, there must be an element of order p^{2} transforming q into $q^{1+p^{m-4}}$. Denoting this element by t, there is again a single type defined by

$$
q^{p^{m-2}}=1, \quad t^{p^{2}}=1, \quad t^{-1} q_{t}=q^{1+p^{m-4}}
$$

The logic of this process may be continued indefinitely until all possible non-abelian groups of order p^{m}, p an odd prime, are determined.

Examples:

2. Determination of all Non-Abelian Groups of Order p^{2} :

If a group of order p^{2} contains an element of order p^{2}, it is cyclic. If not, its $p^{2}-1$ elements other than 1, are all of order p. A subgroup of order p contains $p-1$ elements of order p which enter in no other such subgroup. There must therefore be $p+1$ subgroups of order p, and hence at least one of them is self-conjugate. If this is $<q>$ and if s is an element of order p which is not a power of $q, s^{-1}\langle q\rangle_{s}=\langle q\rangle$. Hence, $s^{-1} q s=q^{\alpha}, s^{-p} q_{s^{p}}=$ $q^{\alpha^{p}}, \alpha^{p} \equiv 2(\bmod p), \alpha=1$, and $q s=s q$. The group is therefore an abelion group generated by two permutable elements of order p. Hence, all groups of order p^{2} are abelian and hence the only distinct types are those represented by (2) and (1,1).
2. Determination of all Non-Abelian Groups of Order p^{3} :

If a nonabelian group of order p^{3} contains an element of order p^{2}, the subgroup it generates is self-conjugate. Hence by (i), there is a single type of group defined by

$$
q^{p^{2}}=1, \quad t^{p}=1, \quad t^{-1} q_{q}=q^{1+p}
$$

If there is no element of order p^{2}, then since there must be a self-conjugate element of order p, by (ii) there is again a single type of group defined by

$$
\begin{gathered}
q^{p}=1, \quad t^{p}=1, \quad r^{p}=1, \quad r^{-1} t r=q \\
t^{-1} q t=q .
\end{gathered}
$$

These two types exhaust all the possibilities for non-abelian groups of order p^{3}.
3. Determination of all Non-Abelian Groups of Order p^{4} :

For non-abelian groups of order p^{4}, which contain elements of order p^{3} there is a single type given by (i). For non-abelian groups of order p^{4}, which contain a self-conjugate cyclic subgroup of order p^{2} and no element of order p^{3}, there are three distinct types given by (ii).

It remains now to determine all distinct types of groups of order p^{4}, which contain no element of order p^{3} and no self-conjugate cyclic subgroup of order p^{2}. This case is discussed in great detail in Burnside beginning with page 140 , line 10 from the bottom of the page. We then obtain the following non-abelian groups

$$
\begin{gathered}
\text { a) } q^{p^{2}}=1, \quad s^{p}=1, \quad r^{p}=1, \quad r^{-1} q r=q s, \\
\text { sqs }=q, \quad r^{-1} s r=s ;
\end{gathered}
$$

b) Three possible groups
$q^{p^{2}}=1, \quad{ }_{s}{ }^{p}=1, \quad s^{-1}{ }_{q s}=q^{1+p}, \quad r^{-1} q r=q s$, $r^{-1} E X=8, \quad r^{p}=q^{\alpha p}$ where $\alpha=0,1$ or any non-residue $(\bmod p)$;
c) For $p>3$

$$
\begin{aligned}
& q^{p}=1, \quad s^{p}=1, \quad r^{p}=1, \quad t^{p}=1, \\
& t^{-1} r t=r s, \quad t^{-1} s t=s q, \quad t^{-1} q t=q, \\
& r^{-1} s r=s, \quad r^{-1} q r=q, \quad s^{-1} q s=q \\
& \text { or for } p=3
\end{aligned}
$$

$$
q^{9}=1, \quad 5^{3}=1, \quad r^{3}=1, \quad s^{-1} q s=q
$$

$$
r^{-1} q r=q s, r r^{-1} s r=q^{-3} s ; \text { and }
$$

d) $q^{p^{2}}=1, \quad s^{p}=1, \quad r^{p}=1, \quad r^{-1}{ }_{q r}=q^{1+p}$,

$$
q^{-1} s q=s, \quad r^{-1} s r=s
$$

II. $(p=2)$. Let G be a non-abelian group of order 2^{m} containing an element q of order $2^{m-1}, m>3$.

Let us first suppose that G contains no element of order 2 except the single element of this order contained in $\langle q\rangle$. Then G is a non-abelian group having only a single subgroup of order 2. It is therefore the last type defined in Theorem 43.

There remains the case in which G contains an element s of order 2 not contained in $\langle q\rangle$. Since $\langle q\rangle$ is self-conjugate in G, it follows that $s^{-1} q s=q^{\alpha}$, where α is some odd positive integer between 1 and 2^{m-1} exclusive of these bounds. Then $q=s^{-2} q s^{2}$ $=q^{\alpha^{2}}$. Hence $\alpha^{2} \equiv I\left(\bmod 2^{m-1}\right)$. Writing $\alpha=1+2^{\beta} k$, where k is odd, we have

$$
\alpha^{2}-1=\left(1+2^{\beta} k\right)^{2}-1=2^{\beta+1}\left(k+k^{2} \cdot 2^{\beta-1}\right) \equiv 0\left(\bmod 2^{m-1}\right)
$$

Hence, (1) $\beta=m-2$, or (2) $\beta=1$ and $k(1+k) \equiv 0\left(\bmod 2^{m-3}\right)$. In case (1) we have $\alpha=1+2^{m-2}$. In case (2), since k is odd, we must have $k=-1+2^{m-3} \delta$, and hence $\alpha=-1+2^{m-2} \delta$, where δ is an integer. Then the only possible values for δ are $\delta=1$ and $\delta=2$. The three cases thus obtained give rise to three distinct types of non-abelian groups
(I) $q^{2^{m-1}}=s^{2}=1, \quad$ sq $=q^{1+2^{m-2}}$;
(2) $q^{2^{m-1}}=s^{2}=1, \quad(s q)^{2}=q^{2^{m-2}}$; and
(3) $q^{2^{m-1}}=s^{2}=(s q)^{2}=1$.

The logic of this process may be continued indefinitely until all possible non-abelian groups of order 2^{m} are determined.

The reader will note from the complexities of previous argumints and the rapidly increasing length of cases in the following table that the determination of abstract groups of a given order is very difficult for orders which contains primes of high order.

Table of Groups of Order p^{n}, p an Odd Prime
a) Non-Abelian Groups of Order p^{3}
(i) $\quad q^{p^{2}}=1, \quad s^{p}=1, \quad s^{-1} q s=q^{1+p} ;$ and
(ii) $\quad q^{p}=1, \quad s^{p}=1, \quad r^{p}=1, \quad r^{-1} s r=s q$,

$$
r^{-1} q r=q, \quad s^{-1} q s=q .
$$

b) Non-Abelian Groups of Order p^{4}
(i)

$s^{p}=1$,
$s^{-1} q s=q^{1+p^{2}} ;$
(ii) $\quad q^{p^{2}}=1, \quad s^{p}=1, \quad r^{p}=1, \quad r^{-1} s r=s q^{p}$,
$s^{-1} q s=q, \quad r^{-1} q r=q ;$
(iii) $q^{p^{2}}=1, \quad{ }_{s} p^{2}=1, \quad s^{-1} q s=q^{1+p}$;
(iv) $\quad q^{p^{2}}=1, \quad s^{p}=1, \quad r^{p}=1, \quad r^{-1} q r=q^{1 \neq p}$,

$$
q^{-1} E q=E, \quad r^{-1} E X=s
$$

(v) $\quad q^{p^{2}}=1, \quad{ }_{5}{ }^{p}=1, \quad r_{r}^{p}=1, \quad r^{-1}{ }_{q r}=q s$,

$$
s^{-1} q s=q, \quad r^{-1} s r=s ;
$$

(vi) Three possible groups

$$
\begin{array}{r}
q^{p^{2}=1,} \quad{ }_{s}^{p}=1, \quad s^{-1} q s=q^{1+p}, \quad r^{-1} q x=q s, \\
r^{-1} s S_{S}=s, \quad r^{p}=q^{\alpha p} \quad \text { where } \alpha=0 \text { or } \alpha=1
\end{array}
$$

or $\alpha=$ any non-residue $(\bmod p)$; and
(vii) For $p>3$

$$
\begin{gathered}
q^{p}=1, \quad s^{p}=1, \quad s^{-1} q s=q_{s} \quad r^{p}=1, \quad t^{p}=1, \\
t^{-1} r t=r s, \quad t^{-1} s t=s q, \quad t^{-1} q t=q, \quad r^{-1} s r=s, \\
r^{-1} q_{q}=q \text { or }
\end{gathered}
$$

for $p=3$
$q^{9}=1, \quad s^{3}=1, \quad r^{3}=1, \quad s^{-1} q s=q$, $r^{-1} q r=q s, \quad r^{-1} s r=q^{-3} s$.

Table of Groups of Order 2^{m}
a) Non-Abelian Groups of Order 2^{3}
(i) $\quad q^{4}=1, \quad s^{2}=1, \quad s^{-1} q s=q^{3} ;$ and
(ii) $\quad q^{4}=1, \quad s^{4}=1, \quad s^{-1} q s=q^{-1}, \quad s^{2}=q^{2}$.
b) Non-Abelian Groups of Order 2^{4}
(i) $\quad q^{8}=1, \quad s^{2}=1, \quad s^{-1} q s=q^{5} ;$
(ii) $\quad q^{4}=1, \quad s^{2}=1, \quad r^{2}=1, \quad r^{-1} 8 r=s q^{2}$,
$s^{-1} r s=q, \quad r^{-1} q r=q ;$
(iii) $q^{4}=1, \quad s^{4}=1, \quad s^{-1} q s=q^{3}$;
(iv) $\quad q^{4}=1, \quad s^{2}=1, \quad r^{2}=1, \quad r^{-1} q r=q^{3}$,

$$
q^{-1} s q=s, \quad r^{-1} e r=s ;
$$

(v) $\quad q^{4}=1, \quad s^{2}=1, \quad r^{2}=1, \quad r^{-2} q r=q s$,

$$
s^{-1} q s=q, \quad r^{-1} g r=s ;
$$

(vi) $\quad q^{4}=1, \quad s^{4}=1, \quad r^{2}=1, \quad s^{-1} q s=q^{-1}$; $s^{2}=q^{2}, \quad r^{-1} g r=s, \quad r^{-1} q r=q ;$
(vii) $q^{8}=1, \quad s^{2}=1, \quad s^{-1} q s=q^{-1}$;
(viii) $q^{8}=1, \quad s^{2}=1, \quad s^{-1} q s=q^{3}$; and
(ix) $\quad q^{8}=1, \quad s^{4}=1, \quad s^{-1} q s=q^{-1}, \quad s^{2}=q^{4}$.

\qquad this ease s add t sure porastable and G is ejchic.

 If i is ail element of order p; then eniluanimito

CHAPIER IV

determination of all abstract groups or order $n=p_{1} p_{2} \cdots p_{n}$ WHERE $p_{1}, p_{2}, \ldots, p_{n}$ ARE DISTINCT PRIMES

Consider first a group G of order $p q$ where $p<q$ and p, q are distinct primes. Then a group of order pq must contains a subgroup of order p and a subgroup of order q. By Theorem 46, if the latter is not self-conjugate, it must be one of p conjugate subgroups, which contain $p(q-1)$ distinct elements of order q. The remaining p elements must constitute a subgroup of order p, which is therefore either a selfconjugate subgroup of order p or one of order q.

Suppose $<t>$ is a self-conjugate subgroup of order p. Let s be an element of order q. Then

$$
\begin{aligned}
& s^{-1} t s=t^{\alpha}, \\
& s^{-q} t_{s}=t^{\alpha}, \\
& \alpha^{s} \equiv 1(\bmod p), \text { and therefore } \alpha \equiv 1(\bmod p) . \text { In }
\end{aligned}
$$

this case s and t are permutable and G is cyclic.
Suppose there is no self-conjugate subgroup of order p. Then there is necessarily a self-conjugate subgroup $\langle\varepsilon\rangle$ of order q, and if t is an element of order p, then

$$
\begin{aligned}
& t^{-1} s t=s^{\beta} \\
& t^{-p} s t^{p}=s^{\beta^{p}} \\
& \beta^{p} \equiv 1(\bmod q), \text { and therefore } \beta \equiv 1(\bmod q) .
\end{aligned}
$$

Again the same case as before. But suppose $q \notin 1(\bmod p)$. This then would involve $\beta=1$ and $\langle t\rangle$ would be self-conjugate which would contradict our assumption. Hence, if the group is noncyclic, $q \equiv 1(\bmod p)$
and $s^{-1} t s=\varepsilon^{\beta}$ where β is a root other than unity of the congruence $\beta \equiv I(\bmod p)$. Between the groups defined by

$$
\begin{array}{ll}
s^{p}=1, & t^{q}=1, \\
s^{\prime} p=1, & t^{-1} t s=1,
\end{array} s^{\prime^{-1}} t^{\prime} s^{\prime}=t^{\beta} \text { and }, ~ l i \beta^{a}, ~ l
$$

an isomorphisu is established by taking s^{\prime} and s^{a}, t^{\prime} and t as corresponding elements. Hence, when $q \equiv 1(\bmod p)$ there is a single type of non-abelian group of order pq.

Example: Groups G of order $2909=23.83$, where 23 and 83 are distinct primes such that 83 EI(mod 23) Gives us only one possible abstract group of order 1909.

What can we do if our group G has an order comprised of three or more distinct primes? Then we have no easy generalized rule to determine all distinct types of abstract groups, but must instead attack each ordex separately according to its unique properties as determined through finite group theory. As an example, I wish to determine all abstract groups of order $30=2 \cdot 3 \cdot 5$.

From Theoren 46, a group of order 30 contains either I or 6 subgroups of order 5 .

In the latter case these 6 subgroups would contain 24 distinct elements of order 5, leaving 6 elements of G to be determined. Among these 6 elements there must be at least one, t, of order 3 , and at least one, u, of order 2. If t transforms u into itself, then t and u generate a cyclic group of order 6 , which exactly supplies the 6 missing elements. This group contains only a single subgroup, $\langle t\rangle$, of order 3, which is therefore the only subgroup of this order contained in G. Again if t does not transform u into itself, then it transforas
the group $<u>$ into 3 conjugate groups of order 2. These contain 3 distinct elements of order 2, leaving only 3 powers of t. In this case also, then, the group G contains only one subgroup, $\langle t\rangle$ of order 3 .

Suppose that, E_{9} any element of order 5 contained in G_{9} transforms t into itsef. Accordingly, s and t generate a cyclic group Hi of order 15. This group contains all the elements of order 3, 5, and 15 which occur in G since if $r \varepsilon G, r \notin H$, then $H, r H, r^{2} H$ will all be different. But this implies we have 45 distinct elements which is impossible. Thus, for this case we can have only one subgroup of G of order 5 , $\langle E\rangle$.

If the subgroup of order 5 is $\langle s\rangle$, and if t is any element of order 3 contained in G, then t must transform s into one of its powers. Consequently, s and t generate a group of order 15. Also, $<5, t>$ contains all elements of order 3,5 , and 15 which occur in G. Hence, $\mathrm{H}^{\prime}=\langle\mathrm{E}, \mathrm{t}\rangle$ is self-conjugate.

We now have to distinguish two principal cases according as H of order 25 is cyclic or not.
A. The Subgroup H is Cyclic; st $=t s$

Since G contains only one subgroup of order 3 as well as only one of order 5 , we nust have $u^{-1} s u=s^{\sigma}, u^{-1} t u=t^{\mu}$.

There are four possible subcases, according as 1) $\sigma=1$, $\mu=1$; 2) $\sigma=1, \mu \neq 1$; 3) $\sigma \neq 1, \mu=1$; and 4) $\sigma \neq 1, \mu \neq 1$.

1) In this case s, t and u being all permutable, the element stu is of order 30 and G is cyclic.
2)

The elements u and t generate a non-cyclic group of order

6 where 3 subgroups of order 2 are $\left\langle t^{-\alpha} u t^{\alpha}\right\rangle,(\alpha=0,1,2)$. The elements $t^{-\alpha} u t^{\alpha}$ are all permutable with s and each of them, taken with 5 , generates a cyclic group of order 1.0. These three groups have only the powers of s in common. Also, they contain 15 distinct elements, which with the elements of $H_{\text {s }}$ make up the entire group. Its generators are $s t=t \sigma_{\text {, }}$ $s u=u s$, and $u^{-1} t u=t^{\beta}$. It contains

1 self-congugate subgroup of order $5,\langle\delta\rangle$;
1 self-conjugate subgroup of order $3,\langle t\rangle$;
3 conjugate subgroups of order $2,\left\langle t^{-\alpha}\right.$ ut $\left.{ }^{\alpha}\right\rangle$ where $(\alpha=$ $0,1,2)$;

1 self-conjugate cyclic subgroup of order $15,\langle s, t\rangle$;
1 self-conjugate, non-cyclic subgroup of order 6 , $\langle t, u\rangle$; and

3 conjugate cyclic subgroups of order $10,\left\langle\mathrm{~s}, \mathrm{t}^{-\alpha} \mathrm{u} t^{\alpha}\right\rangle$, $(\alpha=0,1,2)$.

This case differs from 2) only in the exchange of the roles of s and t.
4) The elements of the group can be written as follows (where $\sigma=s t$);

$$
\begin{aligned}
& 1, \sigma, \sigma^{2}, \ldots, \sigma^{14} \\
& u, \sigma^{-1} u \sigma, \ldots, \sigma^{-14} u \sigma^{14}
\end{aligned}
$$

All of these elements are different, since $\sigma^{-i} u^{\mu} \sigma^{i}=\sigma^{-j} u^{\beta} j^{j}$ would require $\sigma^{-(i-j)} u^{\mu} \sigma^{i-j}=u^{\beta}$ where $\beta=\mu$. But then a power of σ being permutable with u, either s or t would be permutable with u, which is excluded. Hence, this group is not an analogue of the non-cyclic type of order 15. Its generating
relations are st $=t s, u^{-1} s u=s_{s}^{Y}, u^{-1} t u=t^{\mu}$. It contains
1 self-conjugate subgroup of order $5,\langle E\rangle$;
1 self-conjugate subgroup of order $3,\langle t\rangle$;
25 conjugate subgroups of order $2,\left\langle(\Delta t)^{\alpha} u(\Delta t)^{\alpha}\right\rangle$, $(\alpha=0,1,2, \ldots, 24)$;

1 self-conjugate cyclic subgroup of order $25,\left\langle s_{s} t\right\rangle$;
3 conjugate non-cyclic subgroups of order 10 ,

$$
\left\langle 5, t^{-\alpha} u t^{\alpha}\right\rangle,(\alpha=0,1,2) ; \text { and }
$$

5 conjugate non-cyclic subgroups of order 6 ,

$$
\left\langle t, s^{-\alpha}{ }_{u s}^{\alpha}\right\rangle,(\alpha=0,1,2,3,4,) .
$$

B. The Subgroup H is Non-Cyclic; t^{-1} st $\equiv s^{\gamma}, \gamma \geqslant 1$

The group H now contains 1 subgroup of order 5 and 5 subgroupe of order 3. Any element u of order 3 must transform at least one of these three subgroups, say $\langle t\rangle$ into itself. We have then, as: under A,

$$
\begin{aligned}
& u^{-1} s u=s^{\mu}, \quad u^{-1} t u=t^{p}, \quad u^{-1}\left(t^{-1} s t\right) u=u^{-1}\left(s^{\beta}\right) u= \\
& s^{\beta \mu} \cdot \text { But on the other hand, } u^{-1}\left(t^{-1} s t\right) u=u^{-1} t^{-1} u u^{-1} s u . \\
& u^{-1} t u=t^{-\rho} s_{s}^{\mu} t^{\rho}=s^{\beta^{\rho}{ }_{\mu}} . \text { Hence we must have } \\
& \beta^{\rho} \rho_{\mu} \equiv \beta \mu(\bmod 5), \\
& \beta^{\rho-1} \equiv 1(\bmod 5) . \text { But since } \rho-1<3 \text { and }
\end{aligned}
$$

$\beta \neq 1$, this is only possible if $\rho=I$. We have therefore, u^{-1} su $=s^{\mu}, u^{-1} t u=t$, and there are two cases to be distinguished, according as 5) $\mu=1$ or 6) $\mu \neq 1$.
5) Here t and u generate a cyclic group of order 6 which s transforms into 5 distinct conjugate groups of this order.

These groups have the powers of u in common. Also, they contain 20 distinct elements, which with the powers of su make up the entire group. It is readily seen that this group is of essentially the same form as 2) and 3) of A, the elements u, s, t here playing the same role as s, t, u in 2).
6)

In this case as in 5) the elements t and u generate a cyclic group of order 6 , which s transforms into 5 conjugate groups of this order. But in the present case these groups have no element in common except 2. They contain therefore 25 distinct elements, which with the powers of s, make up the entire group. The generating relation are $t^{-1} s t=s^{\beta}, u^{-1} s u$ $=s^{\mu}, u^{-1} t u=t$. It contains

1 self-conjugate subgroup of order $5,\langle s\rangle$;
5 conjugate subgroups of order $3,\left\langle s^{-\alpha} t_{5}^{\alpha}\right\rangle,(\alpha=0,1$, 2, 3,4);

5 conjugate subgroups of order $3,\left\langle s^{-\alpha}\right.$ us $\left.^{\alpha}\right\rangle,(\alpha=0,2$, $2,3,4) ;$

1 self-conjugate non-cyclic subgroup of order 15 , $\langle s, t\rangle$;

1 self-conjugate non-cyclic subgroup of order 10, $\langle s, u\rangle$; and

5 conjugate cyclic subgroups of order $6,\left\langle s^{-\alpha} t s^{\alpha}, u\right\rangle$, $(\alpha=0,1,2,3,4)$.

Consequently, there are only four types of abstract groups of order 30 as expressed by cases 2), 2), 4), and 6).

CHAPTER V

DETERMINATION OF ALL ABSTRACT GROUPS WHOSE ORDER IS $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}$ WHERE $p_{1}, p_{2}, \ldots, p_{n}$ ARE DISTINCT PRIMES

Finally, we will determine all abstract groups of order 40 which will demonstrate some of the obstacles involved in determining $2 l l$ abstract groups of a given order.

A group of order 40 must contain either 1 or 5 subgroups of order 8 and 1 subgroup of order 5 by Theorem 46. If it has 1 subgroup of order 5 and 2 of order 8, the group must, since each of these subgroups is self-conjugate, be their direct product. But from our table of 2^{3}, including abelian groups, there are five distinct types of group of order 8. Hence, this gives us five distinct types of group of order $\%$

If there are 5 subgroups of order 8, come 2 of then must have a. common subgroup of order 4. Also, this common subgroup must be a self-conjugate subgroup of the group of order 40. Moreover, if in this case, a subgroup of order 8 is abelian, each element of the self-conjugate subgroup of order 4 must be a self-conjugate element of the group of order 40.30
(i) Suppose a group of order 8 is to be cyclic, and let q be an element that generates it. If $\langle q\rangle$ is solf-conjugate and s is an element of order 5 , then

$$
\begin{aligned}
& E^{-1} q S=q^{\alpha}, \\
& E^{-5} q 5^{5}=q^{\alpha}
\end{aligned}
$$

$$
\alpha^{5} \equiv 1(\bmod 8), \text { and therefore } \alpha \equiv 1(\bmod 8)
$$

which means that q and s are permutable. This is one of the types already obtained. Hence, for a new type, $\langle q\rangle$ cannot be self-conjugate, and q^{2} must be a self-conjugate element. Therefore, E is one of two conjugate elements, while $\langle\mathrm{s}\rangle$ is self-conjugate. Hence, the only possible new type in this case is given by $q^{-1} B q=\delta_{8}^{\gamma}$ where $\gamma \neq 2$.
(ii) Next, let a group of order 8 be an abelian group defined by

$$
q^{4}=1, \quad s^{2}=1, \quad q s=s q .
$$

If this is self-conjugate, then by considerations similar to those of the preceding case, we infer that the group is the direct product of groups of orders 8 and 5 . Hence, there is not in this case a new type.

If the group of order 8 is not self-conjugate, then the self-conjugate group of order 4 may be either $\langle q\rangle$ or $\left\langle q^{2}, s\right\rangle$. In either case, if t is an element of order 5 , it must be one of five conjugate elements while $\langle t>$ is selfconjugate. Hence, there are two new types given by

$$
\begin{array}{ll}
t^{5}=1, & \text { sts }=t^{\gamma}, \\
t^{5}=1, & q^{-1} \frac{1}{f q}=t, \text { and } \\
t^{\gamma}, & \text { sts }=t \text { where } r \neq 1 .
\end{array}
$$

(iii.) Let a group of order 8 be an abelian group defined by

$$
\begin{gathered}
q^{2}=1, \quad s^{2}=1, \quad t^{2}=1, \quad q s=s q, \quad s t=t s \\
q t=t q .
\end{gathered}
$$

If it is self-conjugate, and if the group of order 40 is not the direct product of groups of orders 8 and 5 , and element u
of order 5 must transform the 7 elements of order 2 among themselves, and must, therefore, be permutable with one of them. Now, the relations $u^{-1} q u=q, u^{-1}$ su $=q s$ are not self-consistent, because they give $u^{-2} s u^{2}=s$. Hence, since the group of order 8 is generated by q, E and any other element of order 2 except qs, we may assume, without loss of generality, that $u^{-1} q u=q, u^{-1} s u=t, u^{-1} t u=q^{x} s_{t} t^{z}$. These relations give
$s=u^{-3} s u^{3}=u^{-1} q_{Q} x_{B} y^{z} u=q^{x(1+z)}{ }_{s} y z_{t} y+z^{2}$, and therefore $y=z=1$. Now, if $u^{-1} t u=q s q$, and if $q s=s^{\prime}$, $q t=t^{\prime}$, then $u^{-1} s^{\prime} u=t^{\prime}, u^{-1} t^{\prime} u=s^{\prime} t^{\prime}$. Thus, the two alternatives $x=0$ and $x=1$ lead to isomorphic groups.

Hence, there is in this case a single type. It is the direct product of $\langle q\rangle$ and $\langle u, s, t\rangle$, where $u^{-1}{ }_{s u}=t, u^{-1}$ tu = st.

If the group of order 8 is not self-conjugate, the self-conjugate group of order 4 may be taken to be $\langle q, s\rangle$, and u being an element of order 5, there is a single new type given by

$$
u^{5}=1, \quad \text { ut }=u^{\gamma}, \quad \text { quq }=u, \quad \text { sus }=u \text { where } r \neq 1
$$

(iv) Let a group of order 8 be a non-abelian group defined by

$$
q^{4}=1, \quad s^{4}=1, \quad q^{2}=s^{2}, \quad s^{-1} q s=q^{-1}
$$

and let t be an element of order 5. If the group of order 8 is self-conjugate, and the group of order 40 is not a direct product of groups of orders 8 and 5, t must transform the 3 subgroups of order $4,\langle q\rangle,\langle B\rangle$ and $\langle q s\rangle$ among themselves. Hence, in this case there is only one new type given by

$$
t^{5}=1, \quad t^{-1} q t=s, \quad t^{-1} s t=q s .
$$

If the subgroup of order 8 is not self-conjugate, the seliconjugate subgroup of order 4 is cyclic, and each of its elements must be permutable with t. Hence, again we get a single new type given by

$$
t^{5}=1, \quad q^{-1} t q=t, \quad s^{-1} t s=t^{\gamma}, \gamma \neq 1 .
$$

(v) Lastly, let a subgroup of order 8 be a non-abelian group defined by $q^{4}=1, \varepsilon^{2}=1$, sqe $=q^{-1}$. This containe one cyclic and two non-cyclic subgroups of order 4. If it is selfconjugate, the group of order 40 must therefore be the direct product of groups of orders 8 and 5, and there is no new type. If the subgroup of order 8 is not self-conjugate, and the self-conjugate subgroup of order 4 is the cyclic group $\langle q\rangle$, then q must be permutable with an element t of order 5 , and there is a single new type given by

$$
t^{5}=1, \quad q^{-1} t q=t, \quad \text { sts }=t^{\gamma}, r \neq 1 .
$$

If the self-conjugate subgroup of order 4 is not cyclic, it nay be token to be $\left\langle 1, q^{2}, s, q^{2} s\right\rangle$. If t is pernutable with each element of this subgroup, there is a single type given by

$$
t^{5}=1, \quad q^{-1} t q=t^{r}, \quad s t s=t, r \neq 1 .
$$

If t is not pernutable with every element of the self-congugate subgroup, it must transform $q^{2}, s, q^{2} s$ among themselves and we tay take $t^{-1} q^{2} t=s, t^{-1} s t=q^{2} s$.

Now, $\left\langle t, q^{2}, s\right\rangle$ is self-conjugate, and therefore q nust transform t into another element of order 5 contained in this subgroup. Hence, $q^{-1} t q=t^{x} q^{2 y_{s}} z^{z}$. The only values of x,
y, z which are consistent with the previous relation $q^{2} t q^{2}=$ t_{q}^{2} s are $x=2, y=z=1$ or $x=2, y=1, z=0$. Either set of values lead to the same type defined by

$$
q^{4}=1, \quad t^{5}=1, \quad(q t)^{2}=1
$$

Consequently, there are 14 types of abstract groups of order 40.

In this paper I have tried to give a line of attack on all abstract groups of a given order through the properties of finite groups. Undoubtedly, this method is fraught with numerous difficulties and complexities as witness the arguments already presented. However, new techniques, perhaps allied with computer technology, may scale such problems to reasonable proportions. I hope the reader has received some insight into this problem. As a valuable source of reference to anyone who may endeavour in this field, I have included the following table of the number of abstract groups of a given order for orders through 160.

Table of the Number of Abstract Groups of a Given Order, (through 160)

Order	Factors	Number of Groups
4	2^{2}	2
6	$2 \cdot 3$	2
8	2^{3}	5
9	3^{2}	2
10	$2 \cdot 5$	2
12	$2^{2} \cdot 3$	5

(continued)

Order
Factors
Number of Groups

24
$2 \cdot 7$
2
16
2^{4}
11.4

18
$2 \cdot 3^{2}$ 5

20
$2^{2} \cdot 5$ 5

21
$3 \cdot 7$
2
22
2.11 2

24

25
26
27
28
30
32
34
36
38
39
40
42
44
45
46
48
49
(continued)

Order	Factors	Number of Groups
50	$2 \cdot 5^{2}$	5
52	$2^{2} \cdot 13$	5
54	$2 \cdot 3^{3}$	15
55	$5 \cdot 11$	2
56	$2^{3} \cdot 7$	13
57	$3 \cdot 19$	2
58	$2 \cdot 29$	2
60	$2^{2} \cdot 3 \cdot 5$	23
62	$2 \cdot 31$	2
63	$3^{2} \cdot 7$	4
64	2^{6}	294
66	$2 \cdot 3 \cdot 11$	4
68	$2^{2} \cdot 17$	5
70	$2 \cdot 5 \cdot 7$	4
72	$2^{3} \cdot 3^{2}$	50
74	$2 \cdot 37$	$2 \cdot 5^{2}$

(continued)

Order	Factors	Number of Groups
88	$2^{3} \cdot 11$	12
90	$2 \cdot 3^{2} \cdot 5$	10
92	$2^{2} \cdot 23$	4
93	3.31	2
94	2.47	2
96	$2^{5} \cdot 3$	230
98	$2 \cdot 7^{2}$	5
99	$3^{2}+11$	2
100	$2^{2} \cdot 5^{2}$	16
102	$2 \cdot 3 \cdot 17$	4
104	$2^{3} \cdot 13$	24
105	3-5.7	2
106	2.53	2
108	$2^{2} \cdot 3^{3}$	45
110	$2 \cdot 5 \cdot 11$	6
111	$3 \cdot 37$	2
112	$2^{4} \cdot 7$	43
214	$2 \cdot 3 \cdot 19$	6
116	$2^{2} \cdot 29$	5
117	$3^{2} \cdot 13$	4
218	2.59	2
120	$2^{3} \cdot 3 \cdot 5$	47
221	11^{2}	2
122	2.61	2

(continued)

Order	Factors	Number of Groups
124	$2^{2} \cdot 31$	4
125	5^{3}	5
126	$2 \cdot 3^{2} \cdot 7$	16
128	2^{7}	not determined
129	3.43	2
130	$2 \cdot 5 \cdot 13$	4
132	$2^{2} \cdot 3 \cdot 11$	10
134	2.67	2
235	$3^{3}-5$	5
136	$2^{3} \cdot 17$	15
138	$2 \cdot 3 \cdot 23$	4
240	$2^{2} \cdot 5 \cdot 7$	11
342	$2 \cdot 71$	2
144	$2^{4} \cdot 3^{2}$	197
246	2.73	2
247	$3 \cdot 7^{2}$	6
148	$2^{2} \cdot 37$	5
150	$2 \cdot 3 \cdot 5^{2}$	23
152	$2^{3} \cdot 19$	12
253	$3^{2} \cdot 17$	2
1.54	$2 \cdot 7 \cdot 11$	4
155	$5 \cdot 31$	2
156	$2^{2} \cdot 3 \cdot 13$	18
158	2.79	2

(continued)

Order Factors Number of Groups
$160 \quad 2^{5} \cdot 5 \quad 238$
${ }^{1}$ George Abram Miller, The Collected Works of George Abram Miller, vol. I (Urbana, University of Illinois, 1935), pp. 1-45.
${ }^{2}$ W. Burnside, Theory of Groups of Finite Order, (Dover Publications, Inc., 2955), p. 32.

3 Ibid, pp. 42-43.
4 Ibid, pp. 43-44.
5 Ibid, pp. 46-47.
6 Ibid, pp. 49-52.
7 Ibid, p. 53.
8 Ibid, pp. 56-57.
9 Ibid, pp. 65-66.
10 Ibid, pp. 67-68.
11 Ibid, pp. 70-71.
12 Ibid, pp. 73-74.
13 Ibid, pp. 74-75.
14 Andrew: O. Lindstrum, Jr., Abstract Algebra , (San Francisco, Holder - Day, Inc., 1967), pp. 83-84.

15 Burnside, Groups of Finite Order, pp. 101-203.
16 Ibid, pp. 103-107.
17 Ibid, p. 119.
18 Ibid, p. 120.
19 Ibid, pp. 121-122.
20 Ibid, pp. 127-128.
${ }^{21}$ Ibid, pp. 128-129.
22 Ibid, pp. 230-131.
23 Ibid, pp. 131-132.
24 Lindstrum, Abstract Algebra, pp. 74-75.
25 Ibid, pp. 76-77.
26 Burnside, Groups of Finite Order, pp. 153-154. 27 Ibid, pp. 126-127.
28 Ibid.
29 Ibid.
30 Ibid, pp. 253-154.

ISodotaves Andrev O_{3}, J_{n} Abstract A1gebare. Sin Fran-

114no(s). 2955

Burnside, We Theory of Groups of Finite Order. Dover Publications, Ince, 1955.

Carmichael, Robert D. Introduction to the Theory of Groupe of Finite Onder, Dover Publications, Ince, 1956.

Hall, Marshall, Jr. The Theory of Groups. New York (The Nacmillan Co.), 1959.

Kurosh, A. G. The Theory of Groups. Now York (Chelsea Publishing (Co.), 2955.

Lindstrum, Andrew 0., Jr. Abstract Algebra. San Francisco (Holden-Day, Inc.), 1967.

Miller, George Abram. The Collected Works of George Abram Miller. 5 vols., Urbana (University of Illinois), 1935.

Scott, W. R. Group Theory. Englewood Cliffs, New Jersey (Prentice-Hall, Inc.), 1964.

Graduate School

Southern Illinois Unjiversity

Name \qquad Kenneth E. Stenzel Date of Birth \qquad $3 / 30 / 46$

Local Address \qquad 2510 Vassar, East St. Louis, Illinois

Home Address \qquad same
\qquad
Note the Colleges or Universities Attended, the Years attended, the degree earned, and the Major Pield.

Southern Illinois University (Edwardsville), 1964-1967, B.A. in Mathematics.

If you have had any special honors or awards, please note them here, If not, go on to the next item.

Phi Eta Sigua
Honor's Day, twice

Thesis Title (Include name of adviser)
Determination of All Abstract Groups of a Giver Order
Adviser: Andrew O. Lindstrum, Jr.

If you have published, please note the articles or books at this point.

