32 research outputs found

    Xq27 FRAXA locus is a strong candidate for dyslexia: evidence from a genome-wide scan in French families.

    Get PDF
    Dyslexia is a frequent neurodevelopmental learning disorder. To date, nine susceptibility loci have been identified, one of them being DYX9, located in Xq27. We performed the first French SNP linkage study followed by candidate gene investigation in dyslexia by studying 12 multiplex families (58 subjects) with at least two children affected, according to categorical restrictive criteria for phenotype definition. Significant results emerged on Xq27.3 within DYX9. The maximum multipoint LOD score reached 3,884 between rs12558359 and rs454992. Within this region, seven candidate genes were investigated for mutations in exonic sequences (CXORF1, CXORF51, SLITRK2, FMR1, FMR2, ASFMR1, FMR1NB), all having a role during brain development. We further looked for 50 UTR trinucleotide repeats in FMR1 and FMR2 genes. No mutation or polymorphism co-segregating with dyslexia was found. This finding in French families with Dyslexia showed significant linkage on Xq27.3 enclosing FRAXA, and consequently confirmed the DYX9 region as a robust susceptibility locus. We reduced the previously described interval from 6.8 (DXS1227–DXS8091) to 4 Mb also disclosing a higher LOD score

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future.

    Get PDF
    This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic The past and the near future

    Get PDF
    BackgroundThis study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases.Materials and methodsA survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019.ResultsQuestionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples.ConclusionsThe COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe

    Sr and Nd isotope data from the fluorspar district of Asturias, northern Spain

    Get PDF
    The origin and age of the hydrothermal fluids related to the precipitation of fluorite, barite and calcite in the Villabona, La Collada and Berbes localities (Asturias fluorspar district, N Spain) have been evaluated from Sr and Nd radiogenic isotopes. Sr isotope data (87Sr / 86Sr=0.7081 to 0.7096) are compatible with mixing between seawater and a more evolved groundwater that interacted with the basement. From Nd isotopes in fluorite, an isochron age of 185±29 Ma (Lower Jurassic) was obtained, consistent with other hydrothermal events in the Iberian Peninsula and Europe. These constraints are essential to proceed with a quantitative model for the genesis of the mineralization that includes fluid and heat flow together with reactive transport of solutes

    Isotopic (S, Sr, Sm/Nd, H, Pb) evidences for multiple sources in the Early Jurassic Chaillac F-Ba ore deposit (Indre, France)

    No full text
    During the earliest Jurassic, a widespread hydrothermal event occurred in western Europe producing large veins and stratiform F-Ba-Pb-Zn ore deposits. Previous work argued about genetic processes involving circulation of mineralising brines. Two main alternative genetic models are proposed. The first one proposes a convection of brines through the crust to produce ore deposits, the second an early infiltration of brine in the basement followed by expulsion during Mesozoic extension. In the northern French Massif Central, new data on the F-Ba Chaillac deposit suggest that the genesis of these mineralising brines requires a new discussion. Located in the northern French Massif Central, the Chaillac barite and fluorite ore deposit is an exceptional site where a stratiform deposit is rooted onto a vein. The ore deposition is split in two stages: 1) precipitation of green and purple fluorite within the vein (Fg-p stage), with associated fluid inclusions indicating 135°C for deposition from a low salinity fluid, and 2) yellow fluorite and barite stage (Fy-Ba) filling the vein and forming the stratiform deposit. Fluid inclusions depict a mineralising brine at 110°C. The <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>143</sup>Nd/<sup>144</sup>Nd isotopic ratios measured in the fluorite are compared to those of French Massif Central rocks. The ratios in green and purple fluorite are similar to those of monzogranite and granodiorite of the basement; those measured in yellow fluorite involve the granulites and other metamorphic rocks of the basement. Measurements of the Sr isotopic ratio and δ<sup>34</sup>SCDT in barite and δD in fluorite fluid inclusions suggest a deposition process by the mixing of a hydrothermal fluid with meteoric water. At the scale of the northern Massif Central district, the successive hydrothermal fluid salinities are highly contrasted as in Chaillac deposit. We propose that the two types of hydrothermal fluids have been produced by the boiling of a single fluid at depth

    Estimating the local paleo-fluid flow velocity: New textural method and application to metasomatism

    Get PDF
    Crystal growth driven by a flowing solution is modeled for a flow with low Reynolds number using a computational dynamic software. Considering equivalent crystallographic faces, the chemical flux is calculated along upstream and downstream faces. Upstream flux is higher compared to downstream and leads to a symmetry breakdown of the crystal shape and develops mirror symmetry parallel to the flow velocity. Moreover the ratio of these two fluxes (upstream/downstream) gives a quantitative relation between the relative crystal growth rate and the flow velocity. Thus, using an inverse method, the flow direction and velocity can be deduced by the study of the variation of the growth band thicknesses of equivalent crystallographic faces. This new method was applied to the formation of metasomatic tourmalinite associated with a leucogranite sill. The approach is complemented by a study of the chemistry of the tourmaline. In the studied case, the application of the new method gives the high fluid velocities in pores (10- 3-10- 4 m/s) during metasomatism. Equivalent Darcy velocities are estimated and discussed accounting for the major role played by the regional deformation. Finally, a two-stage tectono-hydrodynamic model is proposed for the metasomatism. The first stage is genetically linked to the sill injection, and the second is characterized by a wider event with hydrothermal flow passing along the leucogranite sills. © 2009 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex
    corecore