207 research outputs found

    Tight Junction-Related Barrier Contributes to the Electrophysiological Asymmetry across Vocal Fold Epithelium

    Get PDF
    Electrophysiological homeostasis is indispensable to vocal fold hydration. We investigate tight junction (TJ)-associated components, occludin and ZO-1, and permeability with or without the challenge of a permeability-augmenting agent, histamine. Freshly excised ovine larynges are obtained from a local abattoir. TJ markers are explored via reverse transcriptase polymerase chain reaction (RT-PCR). Paracellular permeabilities are measured in an Ussing system. The gene expression of both TJ markers is detected in native ovine vocal fold epithelium. Luminal histamine treatment significantly decreases transepithelial resistance (TER) (N = 72, p<0.01) and increases penetration of protein tracer (N = 35, p<0.001), respectively, in a time-, and dose-dependent fashion. The present study demonstrates that histamine compromises TJ-related paracellular barrier across vocal fold epithelium. The detection of TJ markers indicates the existence of typical TJ components in non-keratinized, stratified vocal fold epithelium. The responsiveness of paracellular permeabilities to histamine would highlight the functional significance of this TJ-equivalent system to the electrophysiological homeostasis, which, in turn, regulates the vocal fold superficial hydration

    Calcium-dependent dynamics of cadherin interactions at cell–cell junctions

    Get PDF
    Cadherins play a key role in the dynamics of cell–cell contact formation and remodeling of junctions and tissues. Cadherin–cadherin interactions are gated by extracellular Ca^(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s^(−1)) upon chelation of extracellular Ca^(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s^(−1)), suggesting two types of native cadherin interactions—one that is rapidly modulated by changes in extracellular Ca^(2+) and another with relatively stable adhesive activity that is Ca^(2+) independent. The Ca^(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where β-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories

    IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses.

    Get PDF
    Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies

    A potential new, stable state of the E-cadherin strand-swapped dimer in solution

    Get PDF
    E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution

    Geographic priorities for research and development on dryland cereals and legumes

    Get PDF
    Dryland cereal and legume crops have often received less attention than maize, wheat and rice in terms of research and development priorities. But these crops are important globally because they serve populations living in poverty and particular socioeconomic and environmental niches. Compared to other crops, less is known about the global distribution of dryland cereal and legume crops and the conditions where they are grown. This research reports on an international effort to compile geographic information on cereal and legume crops and the conditions under which they are cultivated.. The study suggested that dryland cereal and legume crops should be given priority in 18 farming systems worldwide, representing 160 million ha. The priority regions include the drier areas of South Asia, West and East Africa, Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, among other biotic and abiotic constraints. They represent 60% of the global poor and malnourished and make up half of the global population
    • …
    corecore