1,978 research outputs found

    Critical Steps of Plasmodium falciparum Ookinete Maturation

    Get PDF
    The egress and fertilization of Plasmodium gametes and development of a motile ookinete are the first crucial steps that mediate the successful transmission of the malaria parasites from humans to the Anopheles vector. However, limited information exists about the cell biology and regulation of this process. Technical impediments in the establishment of in vitro conditions for ookinete maturation in Plasmodium falciparum and other human malaria parasites further constrain a detailed characterization of ookinete maturation. Here, using fluorescence microscopy and immunolabeling, we compared P. falciparum ookinete maturation in Anopheles coluzzii mosquitoes in vivo and in cell culture in vitro. Our results identified two critical steps in ookinete maturation that are regulated by distinct mosquito factors, thereby highlighting the role of the mosquito environment in the transmission efficiency of malaria parasites

    On fractional Choquard equations

    Full text link
    We investigate a class of nonlinear Schrodinger equations with a generalized Choquard nonlinearity and fractional diffusion. We obtain regularity, existence, nonexistence, symmetry as well as decays properties.Comment: revised version, 22 page

    Eradication of Candida albicans persister cell biofilm by the membranotropic peptide gH625

    Get PDF
    Biofilm formation poses an important clinical trouble due to resistance to antimicrobial agents; therefore, there is an urgent demand for new antibiofilm strategies that focus on the use of alternative compounds also in combination with conventional drugs. Drug-tolerant persisters are present in Candida albicans biofilms and are detected following treatment with high doses of amphotericin B. In this study, persisters were found in biofilms treated with amphotericin B of two clinical isolate strains, and were capable to form a new biofilm in situ. We investigated the possibility of eradicating persister-derived biofilms from these two Candida albicans strains, using the peptide gH625 analogue (gH625-M). Confocal microscopy studies allowed us to characterize the persister-derived biofilm and understand the mechanism of interaction of gH625-M with the biofilm. These findings confirm that persisters may be responsible for Candida biofilm survival, and prove that gH625-M was very effective in eradicating persister-derived biofilms both alone and in combination with conventional antifungals, mainly strengthening the antibiofilm activity of fluconazole and 5-flucytosine. Our strategy advances our insights into the development of effective antibiofilm therapeutic approaches

    Synthesis and gas-sensing properties of pd-doped SnO2 nanocrystals. A case study of a general methodology for doping metal oxide nanocrystals

    Get PDF
    Pd-modified SnO2 nanocrystals, with a Pd/Sn nominal atomic ratio of 0.025, were prepared by injecting SnO2 sols and a Pd precursor solution into tetradecene and dodecylamine at 160 degrees C. Two different doping procedures were investigated: in co-injection, a Pd acetylacetonate solution in chloroform was mixed with the SnO2 sol before the injection; in sequential injection, the Pd solution was injected separately after the SnO2 sol. The obtained suspensions were heated at the resulting 80 degrees C temperature, then the product was collected by centrifugation and dried at 80 degrees C. When using co-injection, in the dried products PdO and Pd nanoparticles were observed by high-resolution transmission electron microscopy. Only SnO2 nanocrystals were observed in dried products prepared by sequential injection. After heat-treatment at 500 degrees C, no Pd species were observed for both doping procedures. Moreover, X-ray photoelectron spectroscopy showed that, in both the doping procedures, after heat-treatment Pd is distributed only into the SnO2 nanocrystal structure. This conclusion was reinforced by the measurement of the electrical properties of Pd-doped nanocrystals, showing a remarkable increase of the electrical resistance if compared with pure SnO2 nanocrystals. This result was interpreted as Pd insertion as a dopant inside the cassiterite lattice of tin dioxide. The addition of Pd resulted in a remarkable improvement of the gas-sensing properties, allowing the detection of carbon monoxide concentrations below 50 ppm and of very low concentrations (below 25 ppm) of other reducing gases such as ethanol and acetone

    Microscopic approach to pion-nucleus dynamics

    Get PDF
    Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum--space first--order optical potential combined with microscopic estimates of second--order corrections. The calculation of the first--order potential includes:\ \ (1)~full Fermi--averaging integration including both the delta propagation and the intrinsic nonlocalities in the π\pi-NN amplitude, (2)~fully covariant kinematics, (3)~use of invariant amplitudes which do not contain kinematic singularities, and (4)~a finite--range off--shell pion--nucleon model which contains the nucleon pole term. The effect of the delta--nucleus interaction is included via the mean spectral--energy approximation. It is demonstrated that this produces a convergent perturbation theory in which the Pauli corrections (here treated as a second--order term) cancel remarkably against the pion true absorption terms. Parameter--free results, including the delta--nucleus shell--model potential, Pauli corrections, pion true absorption, and short--range correlations are presented. (2 figures available from authors)Comment: 13 page

    Calibration of tactile/force sensors for grasping with the PRISMA Hand II

    Get PDF
    The PRISMA Hand II is a mechanically robust anthropomorphic hand developed at PRISMA Lab, University of Naples Federico II. The hand is highly underactuated, three motors drive 19 joints via elastic tendons. Thanks to its particular mechanical design, the hand can perform not only adaptive grasps but also in-hand manipulation. Each fingertip integrates a tactile/force sensor, based on optoelectronic technology, to provide tactile/force feedback during grasping and manipulation, particularly useful with deformable objects. The paper briefly describes the mechanical design and sensor technology of the hand and proposes a calibration procedure for tactile/force sensors. A comparison between different models of Neural Networks architectures, suitable for sensors calibration, is shown. Experimental tests are provided to choose the optimal tactile sensing suite. Finally, experiments for the regulation of the forces are made to show the effectiveness of calibrated sensors

    MRI cortical feature of bulbar impairment in patients with amyotrophic lateral sclerosis

    Get PDF
    The decline of voluntary bulbar functions such as speech and swallowing are among the clinical manifestations of amyotrophic lateral sclerosis (ALS) influencing a worst prognosis. Differential diagnosis between the contribution of upper motor neuron (UMN) and lower motor neuron degeneration to the bulbar impairment is often hard. Thinning and T2* hypointensity of the primary motor cortex have been recently suggested as possible MRI markers of UMN impairment in ALS patients, but little research has purposely targeted the orofacial region of the primary motor cortex (fM1). With the aim of finding an MRI marker of UMN impairment responsible for bulbar dysfunction, we investigated the T2* signal intensity of fM1 and the relationship with bulbar impairment in ALS patients. Fifty-five ALS patients were examined with 3 T MRI. Their fM1 was evaluated both qualitatively in terms of T2* signal intensity and quantitatively by measuring its magnetic susceptibility with Quantitative Susceptibility Mapping (QSM). Bulbar functions were assessed clinically, by neurological examination and using the items 1–3 of the ALSFRS-R, and with neurophysiological tests. The marked hypointensity of fM1 was detected in 25% of ALS patients, including all patients with bulbar onset, and was 74% sensitive, 100% specific and 91% accurate in diagnosing functional bulbar impairment. Such hypointensity involved the middle and ventral part of fM1 and was usually visible in both hemispheres. The magnetic susceptibility was significantly higher in patients with marked fM1 hypointensity than in the other patients (p ≤ .001). The relationship with clinical and neurophysiological data suggests that such feature could be a marker of UMN degeneration for voluntary bulbar functions
    corecore