269 research outputs found

    Music: An Important and Vital Part of the Curriculum

    Get PDF

    Music: An Important and Vital Part of the Curriculum

    Get PDF

    Encouraging teacher change within the realities of school-based agricultural education: lessons from teachers’ initial use of socioscientific issues-based instruction

    Get PDF
    Calls for increased interdisciplinary education have led to the development of numerous teaching techniques designed to help teachers provide meaningful experiences for their students. However, methods of guiding teachers in the successful adoption of innovative teaching approaches are not firmly set. This qualitative study sought to better understand how school-based agricultural education teachers decide to adopt or discontinue a teaching innovation when introduced through ready-made lesson plans, which is currently a common practice of teaching method integration in school-based agricultural education (SBAE). Constant comparative analysis unveiled themes within the reactions to the teaching method’s use, as well as how teacher actions to those reactions led to their ultimate adoption or discontinuance of the teaching method

    An Assessment of the Impact of Internship Programs in the Agricultural Technical Schools of Egypt as Perceived by Participants Groups

    Get PDF
    Experiential learning including student internships has been central to instructional programs in agriculture for decades. If the Agricultural Technical Schools of Egypt are to prepare students for successful careers and to enhance the agricultural economy, teachers must be well-prepared to use this teaching technique. Further, all stakeholders, including students, teachers, parents, headmasters and agribusiness owners, must recognize the importance and impact that implementing a student internship program could have. In this study, all groups identified important contributions to student learning and growth as a result of student participation in the internship program. While several suggestions were posited to improve the program, all agreed that the schools, the communities, the agribusinesses and the students received valuable benefits. The program of student internships in Egypt could be adopted in other countries where the agricultural economy could be improved through a better prepared agricultural workforce

    Host proteostasis modulates influenza evolution

    Get PDF
    Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host-pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance.National Institutes of Health (U.S.) (Award 1DP2GM119162)National Institutes of Health (U.S.) (Grant P30-ES002109

    Multidimensional chemical control of CRISPR–Cas9

    Get PDF
    Cas9-based technologies have transformed genome engineering and the interrogation of genomic functions, but methods to control such technologies across numerous dimensions-including dose, time, specificity, and mutually exclusive modulation of multiple genes-are still lacking. We conferred such multidimensional controls to diverse Cas9 systems by leveraging small-molecule-regulated protein degron domains. Application of our strategy to both Cas9-mediated genome editing and transcriptional activities opens new avenues for systematic genome interrogation

    Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin

    Get PDF
    BACKGROUND: Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a C(γ)-exo or a C(γ)-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying C(γ)-exo puckering. METHODOLOGY/PRINCIPAL FINDINGS: While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the C(γ)-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of -4.71 kJ·mol(-1) in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. CONCLUSIONS/SIGNIFICANCE: The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein

    Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro

    Get PDF
    The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals
    corecore