1,359 research outputs found

    Investigation of conductive thermal control coatings by a contactless method in vacuo

    Get PDF
    A technique for determining the conductance per unit area of thermal control coatings for electrostatically clean spacecraft is described. In order to simulate orbital conditions more closely, current-density-voltage (j-V) curves are obtained by a contactless method in which the paint on an aluminum substrate is the anode of a vacuum diode configuration with a tungsten filament cathode. Conductances per unit area which satisfy the International Sun Earth Explorer (ISEE) requirement were observed on black paints containing carbon and in white and green paints filled with zinc oxide which were fired in order to induce defect conductivity. Because of surface effects and the nonhomogeneous nature of paints, large discrepancies were found between measurements with the contactless method and measurements employing metallic contacts, particularly at low current densities. Therefore, measurements with metallic contacts are considered to be of questionable value in deciding the suitability of coatings for electrostatic charge control

    Radial and angular rotons in trapped dipolar gases

    Full text link
    We study Bose-Einstein condensates with purely dipolar interactions in oblate (pancake) traps. We find that the condensate always becomes unstable to collapse when the number of particles is sufficiently large. We analyze the instability, and find that it is the trapped-gas analogue of the ``roton-maxon'' instability previously reported for a gas that is unconfined in two dimensions. In addition, we find that under certain circumstances, the condensate wave function attains a biconcave shape, with its maximum density away from the center of the gas. These biconcave condensates become unstable due to azimuthl excitation - an angular roton.Comment: 4 pages, 3 figure

    Dynamical pattern formation during growth of a dual-species Bose-Einstein condensate

    Get PDF
    We simulate the growth of a dual species Bose-Einstein condensate using a Gross-Pitaevskii equation with an additional gain term giving rise to the growth. Such growth occurs during simultaneous evaporative cooling of a mixture of two gases. The ground state of a dual condensate is normally either a miscible mixture, or an immiscible phase with two spatially separated components. In a cigar trap the ground state typically consists of one component in the center, and the other component flanking it. Our simulations show that when the condensates are formed in a cigar trap and the mixture is phase separated, then the final state upon the end of the growth is generally far from the true ground state of the system. Instead it consists of multiple, interleaved bubbles of the two species. Such a pattern was observed recently in an experiment by Wieman's group at JILA, and our simulations are in good qualitative agreement with the experiment. We explain the pattern formation as due to the onset of modulation instability during growth, and study the dependence of the final state pattern on various parameters of the system

    Nodeless superconductivity arising from strong (pi,pi) antiferromagnetism in the infinite-layer electron-doped cuprate Sr1-xLaxCuO2

    Full text link
    The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates

    Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr1x_{1-x}Lax_{x}CuO2_{2}

    Get PDF
    We use angle-resolved photoemission spectroscopy to study the doping evolution of infinite-layer Sr1x_{1-x}Lax_{x}CuO2_{2} thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of the superconducting cuprate parent compounds. As carriers are added to the system, a continuous evolution from charge-transfer insulator to superconductor is observed, with the initial lower Hubbard band pinned well below the Fermi level and the development of a coherent low-energy band with electron doping. This two-component spectral function emphasizes the important role that strong local correlations play even at relatively high doping levels. Electron diffraction probes reveal a p(2×2){p(2\times2)} surface reconstruction of the material at low doping levels. Using a number of simple assumptions, we develop a model of this reconstruction based on the polar nature of the infinite-layer structure. Finally, we provide evidence for a thickness-controlled transition in ultrathin films of SrCuO2_2 grown on nonpolar SrTiO3_3, highlighting the diverse structural changes that can occur in polar complex oxide thin films

    Dynamical Trajectory Replanning for Uncertain Environments

    Get PDF
    We propose a dynamical reference generator equipped with an augmented transient “replanning” subsystem that modulates a feedback controller’s efforts to force a mechanical plant to track the reference signal. The replanner alters the reference generator’s output in the face of unanticipated disturbances that drive up the tracking error. We demonstrate that the new reference generator cannot destabilize the tracker, that tracking errors converge in the absence of disturbance, and that the overall coupled reference-tracker system cannot be destabilized by disturbances of bounded energy. We report the results of simulation studies exploring the performance of this new design applied to a two dimensional point mass particle interacting with fixed but unknown terrain obstacles. For more information: Kod*La

    Towards Testable Neuromechanical Control of Architectures for Running

    Get PDF
    Our objective is to provide experimentalists with neuromechanical control hypotheses that can be tested with kinematic data sets. To illustrate the approach, we select legged animals responding to perturbations during running. In the following sections, we briefly outline our dynamical systems approach, state our over-arching hypotheses, define four neuromechanical control architectures (NCAs) and conclude by proposing a series of perturbation experiments that can begin to identify the simplest architecture that best represents an animal\u27s controller
    corecore