74 research outputs found

    Topology and field strength in spherical, anelastic dynamo simulations

    Get PDF
    Numerical modelling of convection driven dynamos in the Boussinesq approximation revealed fundamental characteristics of the dynamo-generated magnetic fields and the fluid flow. Because these results were obtained for an incompressible fluid, their validity for gas planets and stars remains to be assessed. A common approach is to take some density stratification into account with the so-called anelastic approximation. The validity of previous results obtained in the Boussinesq approximation is tested for anelastic models. We point out and explain specific differences between both types of models, in particular with respect to the field geometry and the field strength, but we also compare scaling laws for the velocity amplitude, the magnetic dissipation time, and the convective heat flux. Our investigation is based on a systematic parameter study of spherical dynamo models in the anelastic approximation. We make use of a recently developed numerical solver and provide results for the test cases of the anelastic dynamo benchmark. The dichotomy of dipolar and multipolar dynamos identified in Boussinesq simulations is also present in our sample of anelastic models. Dipolar models require that the typical length scale of convection is an order of magnitude larger than the Rossby radius. However, the distinction between both classes of models is somewhat less explicit than in previous studies. This is mainly due to two reasons: we found a number of models with a considerable equatorial dipole contribution and an intermediate overall dipole field strength. Furthermore, a large density stratification may hamper the generation of dipole dominated magnetic fields. Previously proposed scaling laws, such as those for the field strength, are similarly applicable to anelastic models. It is not clear, however, if this consistency necessarily implies similar dynamo processes in both settings.Comment: 14 pages, 11 figure

    Oscillatory dynamos and their induction mechanisms

    Full text link
    Context: Large-scale magnetic fields resulting from hydromagnetic dynamo action may differ substantially in their time dependence. Cyclic field variations, characteristic for the solar magnetic field, are often explained by an important omega-effect, i.e. by the stretching of field lines due to strong differential rotation. Aims: The dynamo mechanism of a convective, oscillatory dynamo model is investigated. Methods: We solve the MHD-equations for a conducting Boussinesq fluid in a rotating spherical shell. For a resulting oscillatory model, dynamo coefficients have been computed with the help of the so-called test-field method. Subsequently, these coefficients have been used in a mean-field calculation in order to explore the underlying dynamo mechanism. Results: Although the rather strong differential rotation present in this model influences the magnetic field, the omega-effect alone is not responsible for its cyclic time variation. If the omega-effect is suppressed, the resulting alpha^2-dynamo remains oscillatory. Surprisingly, the corresponding alpha-omega dynamo leads to a non-oscillatory magnetic field. Conclusions: The assumption of an alpha-omega mechanism does not explain the occurrence of magnetic cycles satisfactorily

    Kinematic alpha effect in isotropic turbulence simulations

    Full text link
    Using numerical simulations at moderate magnetic Reynolds numbers up to 220 it is shown that in the kinematic regime, isotropic helical turbulence leads to an alpha effect and a turbulent diffusivity whose values are independent of the magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent coefficients are also consistent with expectations from the first order smoothing approximation. For small values of \Rm, alpha and turbulent diffusivity are proportional to \Rm. Over finite time intervals meaningful values of alpha and turbulent diffusivity can be obtained even when there is small-scale dynamo action that produces strong magnetic fluctuations. This suggests that small-scale dynamo-generated fields do not make a correlated contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter

    Reynolds stresses from hydrodynamic turbulence with shear and rotation

    Full text link
    To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\degr) the rotation vector makes with respect to the z-direction. Two subsets of runs are performed with both values of \theta where either rotation or shear is kept constant. When only shear is present, the off-diagonal stress can be described by turbulent viscosity whereas if the system also rotates, nondiffusive contributions (\Lambda-effect) to the stress can arise. Comparison of the direct simulations are made with analytical results from a simple closure model. We find that the turbulent viscosity is of the order of the first order smoothing result in the parameter regime studied and that for sufficiently large Reynolds numbers the Strouhal number, describing the ratio of correlation to turnover times, is roughly 1.5. This is consistent with the closure model based on the minimal tau-approximation which produces a reasonable fit to the simulation data for similar Strouhal numbers. In the cases where rotation is present, separating the diffusive and nondiffusive components of the stress turns out to be challenging but taking the results at face value, we can obtain nondiffusive contributions of the order of 0.1 times the turbulent viscosity. We also find that the simple closure model is able to reproduce most of the qualitative features of the numerical results provided that the Strouhal number is of the order of unity.Comment: 19 pages, 12 figures, published versio

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Weak and Strong Field Dynamos: from the Earth to the stars

    Full text link
    Observations of magnetism in very low mass stars recently made important progress, revealing characteristics that are now to be understood in the framework of dynamo theory. In parallel, there is growing evidence that dynamo processes in these stars share many similarities with planetary dynamos. We investigate the extent to which the weak \emph{vs} strong field bistability predicted for the geodynamo can apply to recent observations of two groups of very low mass fully-convective stars sharing similar stellar parameters but generating radically different types of magnetic fields. Our analysis is based on previously published spectropolarimetric and spectroscopic data. We argue that these can be interpreted in the framework of weak and strong field dynamos.Comment: 5 pages, 4 figures, accepted for publication in MNRAS letter
    • …
    corecore