Using numerical simulations at moderate magnetic Reynolds numbers up to 220
it is shown that in the kinematic regime, isotropic helical turbulence leads to
an alpha effect and a turbulent diffusivity whose values are independent of the
magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent
coefficients are also consistent with expectations from the first order
smoothing approximation. For small values of \Rm, alpha and turbulent
diffusivity are proportional to \Rm. Over finite time intervals meaningful
values of alpha and turbulent diffusivity can be obtained even when there is
small-scale dynamo action that produces strong magnetic fluctuations. This
suggests that small-scale dynamo-generated fields do not make a correlated
contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter