248 research outputs found

    Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    Get PDF
    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intra-cavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for frep and fceo, producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f - 2f interferometer and phase locked to an ultra-stable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz - 1 MHz) respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors respectively

    Phase-stabilized, 1.5-W frequency comb at 2.8 to 4.8 micron

    Full text link
    We present a high-power optical parametric oscillator-based frequency comb in the mid-infrared wavelength region using periodically poled lithium niobate. The system is synchronously pumped by a 10-W femtosecond Yb:fiber laser centered at 1.07 um and is singly resonant for the signal. The idler (signal) wavelength can be continuously tuned from 2.8 to 4.8 um (1.76 to 1.37 um) with a simultaneous bandwidth as high as 0.3 um and a maximum average idler output power of 1.50 W. We also demonstrate the performance of the stabilized comb by recording the heterodyne beat with a narrow-linewidth diode laser. This OPO is an ideal source for frequency comb spectroscopy in the mid-IR.Comment: 4 figure

    A novel paradigm for attributing the diagnosis of CF disease

    Get PDF

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S33Pn3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27)

    Get PDF
    Aims/hypothesis: Non-invasive diagnostic tools specific for pancreatic beta cells will have a profound impact on our understanding of the pathophysiology of metabolic diseases such as diabetes. The objective of this study was to use molecular imaging probes specifically targeting beta cells on human samples and animal models using state-of-the-art imaging modalities (fluorescence and PET) with preclinical and clinical perspective. Methods: We generated a monoclonal antibody, 8/9-mAb, targeting transmembrane protein 27 (TMEM27; a surface N-glycoprotein that is highly expressed on beta cells), compared its expression in human and mouse pancreas, and demonstrated beta cell-specific binding in both. In vivo imaging was performed in mice with subcutaneous insulinomas overexpressing the human TMEM27 gene, or transgenic mice with beta cell-specific hTMEM27 expression under the control of rat insulin promoter (RIP-hTMEM27-tg), using fluorescence and radioactively labelled antibody, followed by tissue ex vivo analysis and fluorescence microscopy. Results: Fluorescently labelled 8/9-mAb showed beta cell-specific staining on human and mouse pancreatic sections. Real-time PCR on islet cDNA indicated about tenfold higher expression of hTMEM27 in RIP-hTMEM27-tg mice than in humans. In vivo fluorescence and PET imaging in nude mice with insulinoma xenografts expressing hTMEM27 showed high 8/9-mAb uptake in tumours after 72h. Antibody homing was also observed in beta cells of RIP-hTMEM27-tg mice by in vivo fluorescence imaging. Ex vivo analysis of intact pancreas and fluorescence microscopy in beta cells confirmed these findings. Conclusions/interpretation: hTMEM27 constitutes an attractive target for in vivo visualisation of pancreatic beta cells. Studies in mouse insulinoma models and mice expressing hTMEM27 demonstrate the feasibility of beta cell-targeted in vivo imaging, which is attractive for preclinical investigations and holds potential in clinical diagnostic

    Delivery of BMP-2 by two clinically available apatite materials: In vitro and in vivo comparison

    Full text link
    Bone morphogenetic proteins (BMPs) are deposited in bone and responsible for osteoinduction. The interplay between delivery system and BMP, resulting in a characteristic release profile, is crucial for clinical success. We here report on two apatite based commercially available granules which could potentially be used in a combination product with recombinant human BMP-2 (rhBMP-2). Regardless of their similar chemistry, their interaction with rhBMP-2 differs. Deproteinized bovine bone matrix (DBBM), a clinically well-established bone substitute, has a high affinity to rhBMP-2 and releases only 50% of the growth factor during the first 2 weeks in vitro. Activity of the physio-adsorbed rhBMP-2 is indicated by an enhanced bone augmentation in vivo. In contrast, all rhBMP-2 delivered in combination with synthetic hydroxyapatite/β-tricalcium phosphate (HA/TCP) granules is released during the first 24 h. For both HA/TCP and DBBM, the released rhBMP-2 is active in vitro. Our results suggest that the different release behavior from these two apatite granules is due to the 1000-fold higher specific surface area of DBBM compared to HA/TCP

    220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    Full text link
    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date
    corecore