4,804 research outputs found

    Half-Megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231

    Full text link
    A deep 400-ksec ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120-ksec data obtained with the same instrument and setup to carry out the first ever spatially resolved spectral analysis of a hot X-ray emitting circumgalactic nebula around a quasar. The 65 x 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc 3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15-kpc northern tidal tail. The hard X-ray continuum emission within 6 kpc of the center is consistent with being due entirely to the bright central AGN. The soft X-ray spectrum of the outer (>6 kpc) portion of the nebula is best described as the sum of two thermal components with T~3 and ~8 million K and spatially uniform super-solar alpha element abundances, relative to iron. This result implies enhanced star formation activity over ~10^8 yrs accompanied with redistribution of the metals on large scale. The low-temperature thermal component is not present within 6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the wide-angle quasar-driven outflow identified from optical IFU spectroscopy on a scale of >3 kpc. Significant azimuthal variations in the soft X-ray intensity are detected in the inner region where the outflow is present. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Halpha and some of the largest columns of neutral gas outflowing from the nucleus. Shocks created by the interaction of the wind with the ambient ISM may heat the gas to high temperatures at this location. (abridged)Comment: 43 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    Full text link
    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table

    How Sensitive are Di-Leptons from Rho Mesons to the High Baryon Density Region?

    Full text link
    We show that the measurement of di-leptons might provide only a restricted view into the most dense stages of heavy ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as e.g. done at GSI-HADES and envisioned for FAIR-CBM, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high baryon density region of the heavy ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract di-leptons from transport simulations - i.e. shining, only vector mesons from final baryon resonance decays and instant emission of di-leptons and find a strong sensitivity on the method employed in particular at FAIR and SPS energies. It is shown explicitly that a restriction to rho meson (and therefore di-lepton) production only in final state baryon resonance decays provide a strong bias towards rather low baryon densities. The results presented are obtained from UrQMD v2.3 calculations using the standard set-up.Comment: 8 pages, 6 figures, expanded versio

    Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-Scale Molecular Outflow

    Full text link
    In Tombesi et al. (2015), we reported the first direct evidence for a quasar accretion disk wind driving a massive molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type-1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the energetics were estimated from the optically thick OH 119 um transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of broad wings in the CO(1-0) profile derived from ALMA observations. The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ~7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) R_7^{-1} M_sun/yr, (1.5-3.0) R_7^{-1} L_AGN/c, and (0.15-0.40)% R_7^{-1} L_AGN are inferred from these data, assuming a CO-to-H_2 conversion factor appropriate for a ULIRG (R_7 is the radius of the outflow normalized to 7 kpc and L_AGN is the AGN luminosity). These rates are time-averaged over a flow time scale of 7x10^6 yrs. They are similar to the OH-based rates time-averaged over a flow time scale of 4x10^5 yrs, but about a factor 4 smaller than the local ("instantaneous"; <10^5 yrs) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also re-examined.Comment: 15 pages, 6 figures, 4 tables, accepted for publication in Ap

    Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6

    Get PDF
    Past observations of QSO host galaxies at z >6 have found cold gas and star formation on compact scales of a few kiloparsecs. We present new high sensitivity IRAM PdBI follow-up observations of the [CII] 158micron emission line and FIR continuum in the host galaxy of SDSS J1148+5152, a luminous QSO at redshift 6.4189. We find that a large fraction of the gas traced by [CII] is at high velocities, up to ~1400 km/s relative to the systemic velocity, confirming the presence of a major quasar-driven outflow indicated by previous observations. The outflow has a complex morphology and reaches a maximum projected radius of ~30 kpc. The extreme spatial extent of the outflow allows us, for the first time in an external galaxy, to estimate mass-loss rate, kinetic power and momentum rate of the outflow as a function of the projected distance from the nucleus and the dynamical time-scale. These trends reveal multiple outflow events during the past 100 Myr, although the bulk of the mass, energy and momentum appear to have been released more recently, within the past ~20 Myr. Surprisingly, we discover that also the quiescent gas at systemic velocity is extremely extended. More specifically, we find that, while 30% of the [CII] within v\in(-200, 200) km/s traces a compact component that is not resolved by our observations, 70% of the [CII] emission in this velocity range is extended, with a projected FWHM size of 17.4+-1.4 kpc. We detect FIR continuum emission associated with both the compact and the extended [CII] components, although the extended FIR emission has a FWHM of 11+-3 kpc, thus smaller than the extended [CII] source. Overall, our results indicate that the cold gas traced by [CII] is distributed up to r~30 kpc. A large fraction of extended [CII] is likely associated with star formation on large scales, but the [CII] source extends well beyond the FIR continuum.Comment: Accepted for publication in A&A, 21 pages, 18 figures, 3 tables (v2: accepted version, discussion expanded in Sect. 3, 4 and in the Appendices, minor changes elsewhere

    Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud

    Full text link
    We observed the newly discovered X-ray source Swift J053041.9-665426 in the X-ray and optical regime to confirm its proposed nature as a high mass X-ray binary. We obtained XMM-Newton and Swift X-ray data, along with optical observations with the ESO Faint Object Spectrograph, to investigate the spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index within the range 0.76 to 0.87. The addition of a black body component increases the quality of the fit but also leads to strong dependences of the photon index, black-body temperature and absorption column density. We identified the only optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&

    Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    Full text link
    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical light curve, can be explained by non-radial pulsations of the Be star. We identify the optical counterpart and classify it as a B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar originating in the tidal structure between the Magellanic Clouds.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Local Swift-BAT active galactic nuclei prefer circumnuclear star formation

    Full text link
    We use Herschel data to analyze the size of the far-infrared 70micron emission for z<0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5<log(LFIR)<10.5, we find large scatter of half light radii Re70 for both populations, but a typical Re70 <~ 1 kpc for the BAT hosts that is only half that of comparison galaxies of same far-infrared luminosity. The result mostly reflects a more compact distribution of star formation (and hence gas) in the AGN hosts, but compact AGN heated dust may contribute in some extremely AGN-dominated systems. Our findings are in support of an AGN-host coevolution where accretion onto the central black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favour feeding of the black hole. No size difference AGN host vs. comparison galaxies is observed at higher far-infrared luminosities log(LFIR)>10.5 (star formation rates >~ 6 Msun/yr), possibly because these are typically reached in more compact regions in the first place.Comment: 7 pages, 3 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore