24,805 research outputs found

    Scaling properties of the Penna model

    Full text link
    We investigate the scaling properties of the Penna model, which has become a popular tool for the study of population dynamics and evolutionary problems in recent years. We find that the model generates a normalised age distribution for which a simple scaling rule is proposed, that is able to reproduce qualitative features for all genome sizes.Comment: 4 pages, 4 figure

    The first analytical expression to estimate photometric redshifts suggested by a machine

    Get PDF
    We report the first analytical expression purely constructed by a machine to determine photometric redshifts (zphotz_{\rm phot}) of galaxies. A simple and reliable functional form is derived using 41,21441,214 galaxies from the Sloan Digital Sky Survey Data Release 10 (SDSS-DR10) spectroscopic sample. The method automatically dropped the uu and zz bands, relying only on gg, rr and ii for the final solution. Applying this expression to other 1,417,1811,417,181 SDSS-DR10 galaxies, with measured spectroscopic redshifts (zspecz_{\rm spec}), we achieved a mean (zphotzspec)/(1+zspec)0.0086\langle (z_{\rm phot} - z_{\rm spec})/(1+z_{\rm spec})\rangle\lesssim 0.0086 and a scatter σ(zphotzspec)/(1+zspec)0.045\sigma_{(z_{\rm phot} - z_{\rm spec})/(1+z_{\rm spec})}\lesssim 0.045 when averaged up to z1.0z \lesssim 1.0. The method was also applied to the PHAT0 dataset, confirming the competitiveness of our results when faced with other methods from the literature. This is the first use of symbolic regression in cosmology, representing a leap forward in astronomy-data-mining connection.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS Letter

    String Evolution with Friction

    Get PDF
    We study the effects of friction on the scaling evolution of string networks in condensed matter and cosmological contexts. We derive a generalized `one-scale' model with the string correlation length LL and velocity vv as dynamical variables. In non-relativistic systems, we obtain a well-known Lt1/2L\propto t^{1/2} law, showing that loop production is important. For electroweak cosmic strings, we show transient damped epoch scaling with Lt5/4L\propto t^{5/4} (or, in the matter era, Lt3/2L\propto t^{3/2}). A low initial density implies an earlier period with Lt1/2L\propto t^{1/2}. For GUT strings, the approach to linear scaling LtL\propto t is faster than previously estimated.Comment: 8 pages, uuencoded gziped .ps file. Paper submitted to Phys. Rev. Let

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of \sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed

    Flora de Cabo Verde - Plantas Vasculares. 67. Apiaceae

    Get PDF
    Er-vas frequentemente com cau!es sukados, muito raramente arbustos ou pequenasá rvores. Caulese m regra ocos ou com medulab em desenvolvida. Folhas alternas,e m regra muito divididas, ocasionalmentes implese , muito raramente, peltadas. Flores em umbelas simples ou mais frequentemente compostasr,a ramentev erticiladaso u capitadas,e m regra bissexuadams asp or vezes unissexuadapso r redu@o. Tubo do cálice unido ao ovário; limbo de 5 dentes em regra minúsculos ou ausentes. Pétalas 5, valvadas, epigínicas, brancas ou, raramente, amareladase, sverdeadaso u rosadaso u, muito raramente, azuis. Estames 5, livres, alternando com as pétalas; anteras 2-loculares, deiscentesp or fendas longitudinais. Estiletes 2, em regra divergentes, muitas vezes parcialmente unidos e frequentcmente com estilopódio bem desenvolvido. Ovario ínfero, Zlocular, com 1 óvulo pêndulo em cada lóculo. Fruto seco, em regra dividindo-se na maturacão em 2 mericarpos ligados a um carpóforo central resultante dos feixes vasculares principais do fruto. Os carpelosa presentamfr equentementec ostasb em desenvolvidase as paredes são providas em regra de canais oleíferos característicos. 0 fruto pode ser lateral- ou dorsahnentec omprimidoe ter asasla terais bem desenvolvidas ou apresentar espinhos ou ganchos. Sementes providas de endosperma oleoso abundante e com embriões muito pequenos. Familia com cerca de 418 génerose 3100e speciese, ssencialmentcea racterística dasr egiõest emperadamentqe uentesd o Globo. Facilmenter econhecível pelo hábito geralmente herbáceo, a disposicão característica das flores em umbelas e principalmente pelo fruto em regra divisivel em 2 mericarpo

    Contribution of domain wall networks to the CMB power spectrum

    Get PDF
    We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.Comment: Submitted to Physics Letters

    Evolution of the fine-structure constant in runaway dilaton models

    Get PDF
    We study the detailed evolution of the fine-structure constant α\alpha in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α\alpha measurements and discuss ways to distinguish it from alternative models for varying α\alpha. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical Λ\LambdaCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α\alpha measurements, will thus dramatically constrain these scenarios.Comment: 11 pages, 4 figure

    The Arches cluster revisited: I. Data presentation and stellar census

    Get PDF
    Context. Located within the central region of the Galaxy, the Arches cluster appears to be one of the youngest, densest and most massive stellar aggregates within the Milky Way. As such it has the potential to be a uniquely instructive laboratory for the study of star formation in extreme environments and the physics of very massive stars. Aims. To realise this possibility, the fundamental physical properties of both cluster and constituent stars need to be robustly determined; tasks we attempt here. Methods. In order to accomplish these goals we provide and analyse new multi-epoch near-IR spectroscopic data obtained with the VLT/SINFONI and photometry from the HST/WFC3. We are able to stack multiple epochs of spectroscopy for individual stars in order to obtain the deepest view of the cluster members ever obtained. Results. We present spectral classifications for 88 cluster members, all of which are WNLh or O stars: a factor of three increase over previous studies. We find no further examples of Wolf-Rayet stars within the cluster; importantly no H-free examples were identified. The smooth and continuous progression in spectral morphologies from O super-/hypergiants through to the WNLh cohort implies a direct evolutionary connection. We identify candidate giant and main sequence O stars spectroscopically for the first time. No products of binary evolution may be unambiguously identified despite the presence of massive binaries within the Arches. Conclusions. Notwithstanding difficulties imposed by the highly uncertain (differential) reddening to the Arches, we infer a main sequence/luminosity class V turn-off mass of ∼ 30 − 38M⊙ via the distribution of spectral types. Analysis of the eclipsing binary F2 suggests current masses of ∼ 80M⊙ and ∼ 60M⊙ for the WNLh and O hypergiant cohorts, respectively; we conclude that all classified stars have masses > 20M⊙. An age of ∼ 2.0 − 3.3Myr is suggested by the turn-off between ∼O4-5 V; constraints imposed by the supergiant population and the lack of H-free WRs are consistent with this estimate. While the absence of highly evolved WC stars strongly argues against the prior occurrence of SNe within the Arches, the derived age does accommodate such events for exceptionally massive stars. Further progress will require quantitative analysis of multiple individual cluster members in addition to further spectroscopic observations to better constrain the binary and main sequence populations; nevertheless it is abundantly clear that the Arches offers an unprecedented insight into the formation, evolution and death of the most massive stars Nature allows to form

    Using gamma regression for photometric redshifts of survey galaxies

    Get PDF
    Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ~1%, that can be achieved in a matter of seconds on large datasets of size ~1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.Comment: Refereed Proceeding of "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th November 2014, to be published in the Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodice, 6 pages, and 1 figur
    corecore