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We use three domain wall simulations from the radiation era to the late-time dark energy domination 
era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall 
networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological 
constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spec-
trum of a network of domain walls is determined. The first ever quantitative constraint for the domain 
wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain 
walls of 0.93 MeV, which is close but below the Zel’dovich bound, is determined.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

All inflationary theories involving Grand Unification Scale phase 
transitions in the early universe predict the existence of topological 
defects [1]. The inflationary field develops a spontaneous sym-
metry breaking phase, where various kinds of topological defects 
may form: textures, monopoles, strings, domain walls [2]. Although 
some of these defects leave characteristic patterns in the Cosmic 
Microwave Background (CMB), no conclusive direct observation of 
defects has been yet found. Of these topological defects, cosmic 
strings have been the most studied in the literature, because they 
were once considered to be the primary sources of anisotropy of 
the CMB [3]. The contribution from cosmic strings and textures in 
the CMB has been recently investigated by the Planck probe [4], 
where stringent constraints on these defects were found.

In the case of domain walls, the situation is different, because 
their energy density grows faster than that of radiation and mat-
ter as the universe is expanding and hence they would eventually 
become the dominant part of the energy of the universe [5,6]. 
For this reason, their symmetry breaking scale is believed to be 
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constrained to around 1 MeV. Nevertheless, their existence is pre-
dicted by various cosmological models which have discrete broken 
symmetries [7,8]. The purpose of this paper is to carry out a more 
quantitative derivation of this bound.

In this paper, we briefly introduce the equations governing 
the evolution of domain walls in the universe. We use the re-
sults of the simulations to calculate the energy–momentum tensor 
of domain walls for each time considered. We then determine 
the unequal time correlators (UETCs) of the stress–energy ten-
sor components at high resolution and precision, relevant for the 
Planck satellite. We use two simulations, covering the entire period 
from recombination to late-time � domination. We diagonalise the 
UETCs and use the eigenvectors as sources for the CMB fluctua-
tions, thus obtaining the domain wall angular power spectrum. We 
combine the results from the three epochs considered in order to 
obtain the final power spectrum. Finally, we use a Markov chain 
Monte Carlo parameter estimation (COSMOMC) code with the lat-
est CMB likelihoods in order to determine the first ever constraints 
on the domain wall amplitudes.

2. Domain walls equations of motion

Domain walls are the simplest cosmological defects, as they can 
be described by a single scalar field φ. One starts with the La-
grangian describing a discrete broken symmetry, that can be writ-
ten as:
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L = − 1

4π

[
1

2
φ,αφ,α + V (φ)

]
(1)

where the field φ is real and the potential V has at least two de-
generate minima [9]. The energy–momentum tensor of the walls 
network can then be expressed in terms of this Lagrangian as fol-
lows:

Tμν = 1

4π

[
φ,μφ,ν − gμν

[
1

2
φ,αφ,α + V (φ)

]]
(2)

In a Friedmann–Lemaître–Robertson–Walker (FRWL) expanding 
universe with scale factor a, the metric is taken to be:

gμν = a2 diag(−1,1,1,1) (3)

where the 0-th dimension corresponds to conformal time. With 
respect to this metric, the components of the energy–momentum 
tensor become:

T00 = 1

4π

[
1

2
φ′ 2 + 1

2
(∇φ)2 + a2 V (φ)

]
(4)

T0i = 1

4π

[
φ′∂iφ

]
(5)

Tij = 1

4π

[
∂iφ∂ jφ + δi j

(
1

2
φ′ 2 − 1

2
(∇φ)2 − a2 V (φ)

)]
(6)

where prime denotes a derivative with respect to conformal time 
and the Laplacian is expressed in physical coordinates. By applying 
the standard variational technique:

1√−g
∂μ

(
√−g

∂L
∂

(
∂μφ

)
)

= ∂L
∂φ

(7)

for the Lagrange density (1) with metric (3) the equation of motion 
for φ is obtained:

∂2φ

∂τ 2
+ 2

(
d ln a

d lnτ

)
1

τ

∂φ

∂τ
− ∇2φ = −a2 ∂V

∂φ
(8)

where τ is the conformal time. In the case of a constant power-law 
expansion of the universe, a ∝ tλ and d ln a

d ln τ = λ
1−λ

has the value 1 
in the radiation era and 2 in the matter era.

In order to calculate the stress–energy tensor components one 
has to first solve equation of motion (8) and then to substitute the 
solution into the corresponding equations (5)–(6). However, in the 
comoving coordinates described above, the thickness of the walls 
decreases as a−1 and, as Eq. (8) has to be solved numerically on 
a grid, the wall thickness quickly becomes smaller than the grid 
spacing. This problem can be overcome by modifying Eq. (8) to [9]:

∂2φ

∂τ 2
+ α

(
d ln a

d lnτ

)
1

τ

∂φ

∂τ
− ∇2φ = −aβ ∂V

∂φ
(9)

The unmodified equation of motion corresponds to α = β = 2. 
However, taking the coefficients to be α = 3 and β = 0, one solves 
the problem of wall thinning, as the walls would have constant 
thickness in comoving coordinates (by modifying β) and would 
also maintain energy–momentum conservation (by modifying α as 
well). The procedure is called the Press–Ryden–Spergel (PRS) algo-
rithm, after the names of the authors in [9].

In practical terms, the main effect of the PRS algorithm is to 
change the wall thickness. We know on physical grounds that the 
physical thickness of the walls can’t affect their dynamics (at least 
once they are formed and reasonably well separated from each 
other), since a wall’s integrated surface density and surface tension 
are independent of the thickness – see for example Chapter 13 of 
Ref. [2].
Moreover, the original PRS paper [9] shows that this algorithm 
preserves the behaviour of two key dynamical effects in the evo-
lution of wall networks: the rate at which the Hubble damping 
localises the scalar field into the minima of the potential, and the 
momentum conservation law (describing how a wall slows down 
due to the Hubble flow). More recently, these results have been 
confirmed by additional analytic arguments [10] and by extensive 
numerical tests [11]. We are therefore confident that the algorithm 
retains the relevant dynamics.

Equation (9) can now be solved numerically on a grid using a 
finite difference scheme as follows:

δ ≡ 1

2
α

�τ

τ

d ln a

d lnτ
(10)(

∇2φ
)

i jk
= φi+1, j,k + φi−1, j,k + φi, j+1,k

+ φi, j−1,k + φi, j,k+1 + φi+1, j,k−1 − 6φi, j,k (11)

φ̇
n+ 1

2
i jk =

(1 − δ) φ̇
n− 1

2
i jk + �τ

(
∇2φn

i jk − aβ ∂V
∂φn

i jk

)
1 + δ

(12)

φn+1
i jk = φn

i jk + �τφ̇
n+ 1

2
i jk (13)

These equations use the assumption that the domain walls al-
ways have a small contribution on the overall energy density of 
the universe. This assumption is based on the fact that no direct 
signs of domain walls have been observed. Hence their contribu-
tion to the matter perturbations can be treated as a first order 
approximation in perturbation theory. Therefore, at this order, their 
evolution does not significantly affect the expansion of the uni-
verse and hence we can safely use a power-law expansion rate for 
radiation and matter epochs.

3. Formalism for calculating the power spectrum

After obtaining the field φ and its time derivative, we use 
Eqs. (5)–(6) to calculate the energy–momentum tensor, and then 
we project it onto a three-dimensional grid as in Ref. [12]. This 
stress–energy tensor is decomposed into its scalar, vector and ten-
sor parts, and as in the case of the strings. We chose to use two 
scalar components, the energy density component 00, and the 
anisotropic scalar S , one vector (V ) and one tensor component 
(T ). We have chosen these particular variables, as they appear 
in the matter perturbation equation in the synchronous gauge. By 
considering small perturbations around a conformally flat FRWL 
background hμν with scalar component h and anisotropic scalar 
component hs , the equations of motion in Fourier space get modi-
fied by the presence of domain walls as follows [13]:

6kh−′ = 4πGa2
∑

i

(ρi + pi) vi − 4πG

k
D (14)

ḧS + 2
a′

a
ḣS − 12k2h− = 16πG

(
a2 p� S + S

)
(15)

ḧV + 2
a′

a
ḣV = 16πG

(
a2 p�V + V

)
(16)

ḧT + 2
a′

a
ḣT + k2hT = 16πG

(
a2 p�T + T

)
(17)

where ρi and pi are density and pressure components of various 
species of relativistic matter, � S,V ,T represent the scalar, vector 
and tensor anisotropic stresses of relativistic matter, h− = h − hS

and D satisfies the equation:

̇D = D

(
−2

ȧ

a
− k2

3 ȧ

)
− k2

3

(
2S − 00 − ̇00

ȧ

)
(18)
a a
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Domain walls are active sources, and compared to inflationary 
fluctuations which are only generated at the surface of last scatter-
ing, they continuously source the metric perturbations. This makes 
direct CMB calculations impossible due to the huge amount of 
data generated. Fortunately, one may use UETCs of domain walls 
which contain all the relevant information at first order in per-
turbation theory. These UETCs represent the two-point correlation 
function of different components of the energy–momentum ten-
sor. This quantity has been studied extensively and has been used 
in the computation of the power spectrum for cosmic strings [12,
14,15]. For domain walls, in this particular gauge, we need three 
scalar UETCs (〈0000〉, 〈SS 〉, 〈00

S 〉), one vector and one 
tensor UETCs. In fact, we have taken two vector and two tensor 
components and checked that they have the same auto-correlators 
and that their cross-correlators vanish. This is due to statistical 
isotropy [16].

As domain walls have a different scaling law compared to cos-
mic strings, the UETCs computed directly are non-scaling even in 
a purely radiation or matter epoch. Therefore, in order to be able 
to use them in a Boltzmann code, we have to fix the scaling. In 
each epoch, the scaling behaviour is achieved by considering the 
quantity, called the UETC:

C (kτ1,kτ2) = 1√
τ1τ2

〈(k, τ1)(k, τ2)〉 (19)

where  corresponds to a generic component of the energy–
momentum tensor. For the cases considered, these are positive 
definite functions, and hence they can be expressed in terms of 
their eigenvectors and positive eigenvalues as follows:

C (kτ1,kτ2) =
∑

i

λi vi(kτ1)
T vi(kτ2)

=
∑

i

wi(kτ1)
T wi(kτ2) (20)

with wi = √
λi vi . Then one would have to substitute the energy–

momentum tensor component with

(k, τ ) → √
τ wi (kτ ) = √

τ
√

λi vi (kτ ) (21)

due to the fact that we have divided by 
√

τ in Eq. (19). For the 
vector and tensor cases this can be done straightforwardly, but for 
scalars we have to create a matrix formed by all the scalar compo-
nents and then diagonalise it:( 〈0000〉 〈00

S〉
〈S00〉 〈SS〉

)
(22)

The first half of each of the eigenvectors corresponds to the 00
part, while the second one to S . The eigenvalues are common to 
both. The resulting eigenvectors are used as sources in an Einstein–
Boltzmann eigensolver separately for scalars, vectors and tensors 
and the results are then summed up in order to obtain the total 
angular power spectrum components.

This procedure works for a simulation across both the radiation 
and the matter era if one assumes that the same unequal time cor-
relators are valid in both epochs. However, this is not the case and 
hence we use the UETCs only in their time range of validity. The 
procedure is described in greater detail in Ref. [12]. For example, 
when calculating the contribution from the matter era, instead of 
making the substitution from Eq. (21), we perform the following 
transformation:

(k, τ ) →
{

0 if τ ∈ radiation era√
τ
√

λi vi (kτ ) if τ ∈ matter era
(23)

and similarly in the case of the radiation era. We go from one 
regime to the other one by using a suitable smoothing function 
to avoid discontinuities and numerical problems. The total power 
spectrum is the sum of the power spectra obtained from the two 
eras. Although the procedure is not exact, in Ref. [12] we show 
that indeed the errors are small. Because domain walls are active 
sources and that they are uncorrelated with the primordial fluctu-
ations, one can calculate their power spectrum separately from the 
inflationary one and sum up the results at the end. This makes the 
calculation of the domain wall power spectrum easier, as we don’t 
have to worry about other cosmological sources.

In the cosmological constant era it is not possible to use the ex-
ponential expansion directly, because the expansion rate does not 
have a simple form as in the radiation and matter eras. However, it 
is important to use a late-time simulation, because as the growth 
of the domain walls density is greater than the background, their 
power spectrum is going to be dominated by the late-time contri-
bution. We propose an approximation to the cosmological constant 
epoch by considering the universe to be expanding with an effec-
tive power law, and we determine the power λ of an expansion 
rate a ∝ tλ that has the same slope today, as the actual expansion 
rate. We then generalise Eq. (23) to include the last simulation as 
well. We use both the two- and three-era calculations to deter-
mine the constraints on the domain walls, and then show that the 
change due to the last epoch is small.

4. Simulations

For our domain wall numerical simulations we use a code 
based on the PRS algorithm [9] with the diagnostic tools in-
troduced in [17]. This has been successively parallelised and 
optimised to exploit recent high-performance computing devel-
opments; the more recent version of the code is described in 
[11], and a forthcoming publication will describe further devel-
opments.

In order to solve Eqs. (10)–(13), we assume the following nu-
merical values of the parameters involved:

α = 3 (24)

β = 0 (25)

V (φ) = π2

50

(
φ2 − 1

)2
(26)

This corresponds to an initial wall thickness of W0 = 10.
The grid spacing is taken to be �x = 1 and the initial conditions 

are such that φ is taking random values on the grid between −1
and 1 and φ̇ = 0 everywhere. We ran 3 three-dimensional sim-
ulations, with a box size of 10243 points, one in radiation era 
(λ = 1/2), one in the matter era (λ = 2/3) and one in late-time 
�-dominated era.

The energy–momentum tensor of the domain wall network can 
be evaluated at any time, but we are only interested in the scaling 
regime of the simulation for the calculation of UETCs. The regime 
where the network exhibits such behaviour has been investigated 
in detail in [11,18]. In Fig. 1 we show the peaks of the 〈0000〉
unequal time correlators calculated using Eq. (19), with each of 
them centred around the value on the x-axis. This shows how good 
the scaling is in this regime.

In Fig. 2 we have plotted four 2-dimensional slices through 
the domain wall network at different times of the simulation, and 
these show how the network becomes less dense over time.

For the �-era, taking into account that the contribution to-
day would be the most important, we consider a simulation with 
λ = H0t0, where t0 is the age of the universe and H0 is the Hubble 
expansion rate today. Using the values of the cosmological param-



A. Lazanu et al. / Physics Letters B 747 (2015) 426–432 429
eters from Ref. [19], we take an average value of λ = 0.95 between 
various likelihoods.

In a universe with a ∝ tλ , the physical density of domain walls 
can be expressed as:

ρ = (1 − λ)

(
Aτ

V

)
σ

ct
(27)

where A is the comoving area of the walls, V is the volume of the 
simulation box and σ is the surface tension of the domain walls. 
Using the units in the simulation, we are obtaining the product of 
the first two terms in Eq. (27). The domination of the power spec-
trum by the contribution from the matter era makes it possible to 

Fig. 1. Scaling behaviour of the UETC in the radiation (top) and matter (bottom) 
eras.
safely use λ = 2
3 without introducing significant errors. In the mat-

ter era, for the scaling regime we took Aτ
V = 1.93. Using Eq. (27)

and the fact that the background density of the universe is given 
by ρ̄ = 1

6πGt2 . Hence, the coefficient multiplying the power spec-
trum today is given by:

(
6πGt0σ

c

)2

(28)

5. Results

We have calculated the power spectra for the domain walls 
in the temperature and polarisation channels for the radiation 
and matter era simulations separately and then by combining the 
two simulations together. We have also realised this in the three-
simulations scenario.

The results show that the radiation era contribution has a sub-
dominant effect. This was expected, because the growth of the 
density of domain walls over time would mean that their most 
significant contribution is at late times. Indeed, as the matter era 
results completely dominate the power spectra, the errors from the 
procedure of combining the simulations become completely negli-
gible. In Fig. 3 we have plotted separately the contributions from 
the radiation and matter epochs to the power spectra in the tem-
perature and polarisation channels showing how the matter era 
dominates on all the scales of interest. Only in the scalar TE plot 
one can see a more important effect of the radiation era. The fact 
that the power spectra are completely dominated by matter is in 
agreement to the domination of the results by the late-time con-
tributions and also on the necessity to run a simulation with a 
higher expansion rate.
Fig. 2. Two-dimensional slices of the domain wall network during the scaling regime in the matter era (from left to right and top to bottom – roughly equal conformal time 
steps between the beginning and end of simulation).
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vectors and tensors in the temperature and polarisation 
 the plots σ/t0 = 1.5 × 10−7. (For interpretation of the 
Fig. 3. Power spectra of domain walls showing the individual results from the radiation (in blue) and matter (in green) eras as well as total power spectra for scalars, 
(EE, TE and BB) channels. In the case of the TE polarisation we have plotted the negative parts with dashed lines in the same colours as their positive counterparts. In
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Comparison between the domain walls power spectra from radiation & matter eras and radiation, matter & � eras. In the plots σ/t0 = 1.5 × 10−7.
By adding the late-time simulation, the peak of the curves at 
l = 2 drops by about one third in all four power spectra considered 
(Fig. 4). In that case, the expansion rate of the universe is faster 
than the growth of the domain wall density and hence the power 
is leaking to intermediate scales, keeping an approximately con-
stant integrated power spectrum. As a consequence there is only 
a small change in the CMB constraint on domain walls in the two 
scenarios.

6. CMB constraints on domain walls

We used the COSMOMC code [20] which is based on a Markov 
chain Monte Carlo method to obtain constraints on the allowed 
contribution of the domain walls to the CMB power spectrum. 
We had to modify the code to accommodate the power spectrum 
from the domain walls. As the domain wall matter perturbations 
are uncorrelated to the primordial fluctuations, their power spec-
trum can be calculated separately. This is very helpful, because 
although their spectrum would depend on the cosmological pa-
rameters, the relative change to the inflationary spectrum would 
be small. For cosmic strings it has been checked [21,22] that this 
variation is less than 20% and this is expected to happen for do-
main walls as well. Domain walls are tightly constrained by their 
TT power spectrum shape and hence the parameter variation im-
pact would not be very significant. We have used the standard 
�CDM six-parameter model, together with a parameter quantify-
ing the amplitude of the spectrum of the walls together with the 
latest Planck likelihoods.

We have analysed the radiation and matter scenarios, and also 
one involving a late-time cosmological constant epoch. For the ra-
diation and matter scenario, we have obtained a constraint on the 
surface density of the domain walls of σ < 4.22 × 10−9 kg/m2 (at 
95% confidence level), which corresponds to an energy scale of for-
mation for domain walls of 0.96 MeV [2].

By considering in addition the cosmological constant era, the 
constraints become σ < 3.85 ×10−9 kg/m2 and 0.93 MeV. Both are 
Table 1
Constraints on the fitted cosmological parameters, together with 1σ error bars in 
a full likelihood analysis (with all relevant nuisance parameters) with and without 
domain walls in the case of Planck and WMAP polarisation in the two domain walls 
scenarios considered.

Parameter No walls Walls (R+M) Walls (R+M+�)

σ < (95%) – 0.96 0.93
H0 67.20±1.16 67.25 ±1.18 67.31 ±1.18
100�bh2 2.202±0.027 2.201 ±0.028 2.203 ±0.028
�ch2 0.120 ±0.003 0.119 ±0.003 0.119±0.003
τ 0.089 ±0.013 0.088 ±0.013 0.088 ±0.013
100θMC 1.0412 ±0.0006 1.0412 ±0.0006 1.0412 ±0.0006
ln(1010 As) 3.088 ±0.025 3.085 ±0.025 3.086 ±0.024
ns 0.959 ±0.007 0.960 ±0.007 0.960 ±0.007

in very good agreement with very rough observational constraints 
based just on the anisotropy constraint δT /T ≤ 10−5, which sug-
gest that their energy scale should be less then 1 MeV (the original 
Zel’dovich bound) [5].

Even though intuitively one may expect the constraint to 
weaken by adding the cosmological constant era (due to the fact 
that there is less power on very large scales), this does not happen 
because there is additional power on intermediate scales. There 
are large error for small l and beyond l = 10 the integrated power 
spectra are almost equivalent.

The values of the �CDM parameters do not shift significantly 
from the standard best fit �CDM Planck values, without domain 
walls. This is illustrated in Table 1. This is due to the fact that the 
allowed contribution of domain walls is very small, because of the 
different shape of their temperature power spectrum.

Using these values of the energy scale, we have plotted on the 
same graph in logarithmic scale the standard CMB Planck power 
spectrum [19] and the domain walls power spectra, normalised at 
the 95% confidence level for its surface density (Fig. 5). The plot 
shows that indeed the domain walls only contribute on large scales 
as their power spectrum is quickly decaying in l-space.
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Fig. 5. Comparison between the CMB power spectrum (from Planck) and the power 
spectrum from domain walls (normalised at the 2σ value of the energy scale) in 
the two scenarios considered.

7. Conclusions

In this paper we have used high-resolution simulations based 
on the PRS algorithm to evaluate the energy–momentum tensor 
of a network of domain walls in an expanding universe, cover-
ing the radiation, matter and late-time �-domination eras. We 
have analysed how the wall network scales and we have then 
evaluated its unequal time correlator components in each epoch. 
We have used the rescaled eigenvectors and eigenvalues obtained 
from these correlators as sources into an Einstein–Boltzmann 
solver and we have thus determined the power spectrum of 
the domain wall network. The temperature power spectrum is 
quickly decreasing as a function of l and has its maximum 
where the CMB measurements have large error bars. This allows 
the presence of some domain walls even though the shape of 
their power spectrum is completely different to the one of the 
CMB.

We have analysed two scenarios: one where only radiation and 
matter eras are considered and one which involves in addition a 
fast-expansion rate. We have shown that although there are notice-
able changes in the obtained power spectra, the CMB constraints 
vary insignificantly.

We have used the CMB power spectrum to find the first pre-
cise quantitative constraint on the domain wall surface density, 
with an energy scale of 0.93 MeV at the 95% CL for the standard 
�-cosmology.
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