292 research outputs found

    Catastrophic disassembly of actin filaments via Mical-mediated oxidation.

    Get PDF
    Actin filament assembly and disassembly are vital for cell functions. MICAL Redox enzymes are important post-translational effectors of actin that stereo-specifically oxidize actin's M44 and M47 residues to induce cellular F-actin disassembly. Here we show that Mical-oxidized (Mox) actin can undergo extremely fast (84 subunits/s) disassembly, which depends on F-actin's nucleotide-bound state. Using near-atomic resolution cryoEM reconstruction and single filament TIRF microscopy we identify two dynamic and structural states of Mox-actin. Modeling actin's D-loop region based on our 3.9 Å cryoEM reconstruction suggests that oxidation by Mical reorients the side chain of M44 and induces a new intermolecular interaction of actin residue M47 (M47-O-T351). Site-directed mutagenesis reveals that this interaction promotes Mox-actin instability. Moreover, we find that Mical oxidation of actin allows for cofilin-mediated severing even in the presence of inorganic phosphate. Thus, in conjunction with cofilin, Mical oxidation of actin promotes F-actin disassembly independent of the nucleotide-bound state

    Imaging the State-Specific Vibrational Predissociation of the Hydrogen Chloride-Water Hydrogen-Bonded Dimer †

    Get PDF
    The state-to-state vibrational predissociation dynamics of the hydrogen-bonded HCl-H 2 O dimer were studied following excitation of the HCl stretch of the dimer. Velocity-map imaging and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, HCl fragments were detected by 2 + 1 REMPI via the f 3 ∆ 2 r X REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J′′ up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of D 0 ) 1334 ( 10 cm -1 . The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy

    Low-lying, Rydberg states of polycyclic aromatic hydrocarbons (PAHs) and cyclic alkanes

    Get PDF
    TD-DFT calculations of low-lying, Rydberg states of a series of polycyclic hydrocarbons and cyclic alkanes are presented. Systematic variations in binding energies and photoelectron angular distributions for the first members of the s, p and d Rydberg series are predicted for increasing molecular complexity. Calculated binding energies are found to be in very good agreement with literature values where they exist for comparison. Experimental angle-resolved photoelectron spectroscopy results are presented for coronene, again showing very good agreement with theoretical predictions of binding energies and also for photoelectron angular distributions. The Dyson orbitals for the small "hollow" carbon structures, cubane, adamantane and dodecahedrane, are shown to have close similarities to atomic s, p and d orbitals, similar to the superatom molecular orbitals (SAMOs) reported for fullerenes, indicating that these low-lying, diffuse states are not restricted to π-conjugated molecules. © 2017 the Owner Societies

    Adverse Events in a Cohort of HIV Infected Pregnant and Non-Pregnant Women Treated with Nevirapine versus Non-Nevirapine Antiretroviral Medication

    Get PDF
    BACKGROUND: Predictors of adverse events (AE) associated with nevirapine use are needed to better understand reports of severe rash or liver enzyme elevation (LEE) in HIV+ women. METHODOLOGY: AE rates following ART initiation were retrospectively assessed in a multi-site cohort of 612 women. Predictors of onset of rash or LEE were determined using univariate and multivariate analyses. PRINCIPAL FINDINGS: Of 612 subjects, 152 (24.8%) initiated NVP-based regimens with 86 (56.6%) pregnant; 460 (75.2%) initiated non-NVP regimens with 67 (14.6%) pregnant. LEE: No significant difference was found between regimens in the development of new grade ≥2 LEE (p  =  0.885). Multivariate logistic regression demonstrated an increased likelihood of LEE with HCV co-infection (OR 2.502, 95% CI: 1.04 to 6, p =  0.040); pregnancy, NVP-based regimen, and baseline CD4 >250 cells/mm(3) were not associated with this toxicity. RASH: NVP initiation was associated with rash after controlling for CD4 and pregnancy (OR 2.78; 95%CI: 1.14-6.76), as was baseline CD4 >250 cells/mm(3) when controlling for pregnancy and type of regimen (OR 2.68; 95% CI: 1.19-6.02 p  =  0.017). CONCLUSIONS: CD4 at initiation of therapy was a predictor of rash but not LEE with NVP use in HIV+ women. Pregnancy was not an independent risk factor for the development of AEs assessed. The findings from this study have significant implications for women of child-bearing age initiating NVP-based ART particularly in resource limited settings. This study sheds more confidence on the lack of LEE risk and the need to monitor rash with the use of this medication

    Enhancement of crystallization with nucleotide ligands identified by dye-ligand affinity chromatography

    Get PDF
    Ligands interacting with Mycobacterium tuberculosis recombinant proteins were identified through use of the ability of Cibacron Blue F3GA dye to interact with nucleoside/nucleotide binding proteins, and the effects of these ligands on crystallization were examined. Co-crystallization with ligands enhanced crystallization and enabled X-ray diffraction data to be collected to a resolution of at least 2.7 Å for 5 of 10 proteins tested. Additionally, clues about individual proteins’ functions were obtained from their interactions with each of a panel of ligands

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Pharmacogenetic & Pharmacokinetic Biomarker for Efavirenz Based ARV and Rifampicin Based Anti-TB Drug Induced Liver Injury in TB-HIV Infected Patients

    Get PDF
    BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI) has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI) in HIV and tuberculosis (TB) co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353) were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001), higher plasma efavirenz level (p = 0.009), efavirenz/8-hydroxyefavirenz ratio (p = 0.036), baseline AST (p = 0.022), ALT (p = 0.014), lower hemoglobin (p = 0.008), and serum albumin (p = 0.007), NAT2 slow-acetylator genotype (p = 0.039) and ABCB1 3435TT genotype (p = 0.001). CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification of patients at risk of DILI

    The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling

    Get PDF
    The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc
    corecore