178 research outputs found

    Effect of a commercial root growth enhancer on the turfgrass species "Lolium perenne" and the weed "Poa annua"

    Get PDF
    Se pretende comprobar si la aplicación de un enraizante durante la resiembra otoñal de la cespitosa “Lolium perenne” sobre las calles de los campos de golf conformados por “Cynodon dactylon”, favoreciese la competencia de “L. perenne” frente a Poa annua, mala hierba que germina precisamente en esta época. Se realizaron 2 ensayos iguales en cámara de crecimiento aplicando 10 dosis distintas del enraizante en ambas especies y se determinó al final del ensayo, tanto el crecimiento como el peso seco de la parte aérea y radical de ambas especies. Tan sólo en uno de los 2 ensayos el enraizante parece favorecer a la cespitosa frente a “P. annua” por lo que no puede concluirse categóricamente que el enraizante pueda ser un medio de control efectivo frente a la mala hierba.It is intended to check the performance of a root growth enhancer in order to promote “Lolium perenne” competiveness over “Poa annua”, during the overseeding cultural practice on “Cynodon dactylon” golf course fairway, as “P. annua” naturally germinates at the same time. Two equal laboratory experiments were conducted testing 10 doses of the root enhancer in both species. At the end of the experiments seedling growth and root and leaf dry weight were determined for both species. The tested product only promotes “L. perenne” competiveness in one experiment, therefore it cannot be concluded the root enhancer could be an effective weed control method

    Biogeochemical changes at the sediment–water interface during redox transitions in an acidic reservoir: exchange of protons, acidity and electron donors and acceptors

    Get PDF
    Redox transitions induced by seasonal changes in water column O2 concentration can have important effects on solutes exchange across the sediment–water interface in systems polluted with acid mine drainage (AMD), thus influencing natural attenuation and bioremediation processes. The effect of such transitions was studied in a mesocosm experiment with water and sediment cores from an acidic reservoir (El Sancho, SW Spain). Rates of aerobic organic matter mineralization and oxidation of reduced inorganic compounds increased under oxic conditions (OX). Anaerobic process, like Fe(III) and sulfate reduction, also increased due to higher O2 availability and penetration depth in the sediment, resulting in higher regeneration rates of their corresponding anaerobic e− acceptors. The contribution of the different processes to oxygen uptake changed considerably over time. pH decreased due to the precipitation of schwertmannite and the release of H+ from the sediment, favouring the dissolution of Al-hydroxides and hydroxysulfates at the sediment surface. The increase in dissolved Al was the main contributor to water column acidity during OX. Changes in organic matter degradation rates and co-precipitation and dissolution of dissolved organic carbon and nitrogen with redox-sensitive Fe(III) compounds affected considerably C and N cycling at the sediment–water interface during redox transitions. The release of NO2 − and NO3 − during the hypoxic period could be attributed to ammonium oxidation coupled to ferric iron reduction (Feammox). Considering the multiple effects of redox transitions at the sediment–water interface is critical for the successful outcome of natural attenuation and bioremediation of AMD impacted aquatic environments

    Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes

    Full text link
    [EN] The use of lay-flat polyethylene pipes to irrigate horticultural crops has been receiving widespread attention in the last decade, due to the significant improvements in their hydraulic performance, their potentially high application efficiency, and their limited installation costs. However, even if hydraulic design procedures for conventional microirrigation systems are fairly well established, there is still the need to know how different pipe-wall thicknesses of lay-flat pipes can affect the pipe geometry under different operating pressures as well as the related consequences on friction losses. This paper, after comparing two different procedures (caliper and photographic) to assess the geometry of lay-flat polyethylene pipes under different operating pressures, analyzes the friction losses per unit of pipe length, J, in order to identify and to assess a procedure for their evaluation. Hydrostatic tests, initially carried out on pipes with wall thicknesses of 6, 8, and 10 thousandth of an inch (mil), evidenced that the pipe dimensions measured with both methods are quite similar, despite the generally higher standard deviations characterizing caliper measurements when compared to photographic method. Tests allowed to verify that most of the changes in pipe dimensions occur within a range of pressure from 0 kPa to about 30 kPa, with pipe horizontal width and vertical height quite similar at higher pressures and pipes have a tendency to become circular. Additionally, due to the elasticity of the material, over a certain limit of water pressure, both the pipe dimensions tend to rise, with a trend depending on pipe thickness. According to the experimental data, the relationships between pipe effective diameter and water pressure were then determined for the three considered pipes. Moreover, based on measured friction losses and pipe effective diameters, it was confirmed that the relationship between the Darcy-Weisbach friction factor, f, and the Reynolds number, R, can be described by a power equation in which, by assuming a value of -0.25 for the exponent, it results a coefficient c = 0.285, lower than the theoretical. For the three investigated pipes the errors associated to estimated J were finally evaluated by considering (1) the experimental relationships between friction factor and Reynolds number as well as between pipe diameter and operating pressure (Case A); (2) the same value of c, but pipe effective diameters of 16.20, 16.10, and 15.85 mm corresponding to p = p(lim) (Case B); (3) the standard procedure, with a value of c = 0.302 and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer. The results evidenced that suitable estimations of J need to account for the variations of the pipe effective diameter with water pressure. On the other hand, incorrect values of pipe diameter combined with inexact values of the friction factor generate inaccurate estimations of friction losses, with unavoidable consequences in pipe design. (C) 2015 American Society of Civil Engineers.The research was cofinanced by Universita di Palermo (FFR 2011) and Ministero dell'Istruzione, dell'Universita e della Ricerca (PRIN 2010). All the authors setup the research and discussed the results. V. Alagna and D. Autovino carried out the experimental measurements and G. Provenzano wrote the paper. A special thank to the Committee for International Relations Office (CORI) of University of Palermo to support the research cooperation with the University of Valencia.Provenzano, G.; Alagna, V.; Autovino, D.; Manzano Juarez, J.; Rallo, G. (2016). Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes. Journal of Irrigation and Drainage Engineering. 142(2):1-9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000958S19142

    Can anthocyanin presence ameliorate the photosynthetic performance of Prunus saplings subjected to polyethylene glycol-simulated water stress?

    Get PDF
    The aim was the evaluation of the biochemical and physiological responses of green- (GP) and red-leafed (RP) Prunus cerasifera mature leaves to 20 d of polyethylene glycol (PEG 6000)-induced water stress in order to elucidate a possible ameliorative role exerted by anthocyanins. At 10 d, the anthocyanin content remained unchanged in RP water-stressed leaves. Photosynthetic rate was lower in GP than that of RP (83.4 vs. 76.5%, respectively), paralleled by a higher degree of photoinhibition (Fv/Fm) in GP leaves. Leaves of GP accounted for higher content of soluble sugars at 10 d, when RP only showed a slight sucrose increase. At 20 d of stress, both morphs recovered their Fv/Fm values, suggesting the ability of both genotypes to adjust their photosynthetic metabolism under conditions of water stress. In conclusion, besides the sunscreen role served by anthocyanins, the carbon sink by these flavonoids might have further prevented sugar accumulation and the consequent sugar-promoted feedback regulation of photosynthesis in drought-stressed red leaves

    Creedy, Jean Iris

    Get PDF
    The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones

    Epigenetics, stem cells, and autophagy: Exploring a path involving miRNA

    Get PDF
    MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications

    Biomarker dynamics affecting neoadjuvant therapy response and outcome of HER2-positive breast cancer subtype

    Get PDF
    HER2+ breast cancer (BC) is an aggressive subtype genetically and biologically heterogeneous. We evaluate the predictive and prognostic role of HER2 protein/gene expression levels combined with clinico-pathologic features in 154 HER2+ BCs patients who received trastuzumab-based neoadjuvant chemotherapy (NACT). The tumoral pathological complete response (pCR) rate was 40.9%. High tumoral pCR show a scarce mortality rate vs subjects with a lower response. 93.7% of ypT0 were HER2 IHC3+ BC, 6.3% were HER2 IHC 2+/SISH+ and 86.7% of ypN0 were HER2 IHC3+, the remaining were HER2 IHC2+/SISH+. Better pCR rate correlate with a high percentage of infiltrating immune cells and right-sided tumors, that reduce distant metastasis and improve survival, but no incidence difference. HER2 IHC score and laterality emerge as strong predictors of tumoral pCR after NACT from machine learning analysis. HER2 IHC3+ and G3 are poor prognostic factors for HER2+ BC patients, and could be considered in the application of neoadjuvant therapy. Increasing TILs concentrations, lower lymph node ratio and lower residual tumor cellularity are associated with a better outcome. The immune microenvironment and scarce lymph node involvement have crucial role in clinical outcomes. The combination of all predictors might offer new options for NACT effectiveness prediction and stratification of HER2+ BC during clinical decision-making

    Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean

    Get PDF
    Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers
    corecore