8,375 research outputs found

    Comparison of NASTRAN and MITAS nonlinear thermal analyses of a convectively cooled structure

    Get PDF
    Comparative steady state nonlinear thermal analyses of a scramjet fuel injection strut are presented. The analyses were performed using the NASTRAN finite element program and MITAS, a lumped-parameter thermal analyzer. The strut is subjected to aerodynamic heating on two sides and is internally cooled by hydrogen flowing from internal manifolds through heat exchangers bonded to the primary structure. Based on coolant temperatures determined by MITAS, NASTRAN predicted temperature distributions throughout the strut which were in close agreement with similar MITAS predictions

    Supercomputer implementation of finite element algorithms for high speed compressible flows

    Get PDF
    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

    Thermostructural analysis of a scramjet fuel-injection strut

    Get PDF
    Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated

    Results of tests OA26 and IA16 in the NASA/ARC 3.5-foot hypersonic wind tunnel on an 0.015-scale model (36-OTS) of the space shuttle configuration 140A/B to obtain pressures for venting analysis

    Get PDF
    Tests were conducted, from November 15 to December 4, 1973, to obtain surface pressure data on an 0.015-scale replica of the Space Shuttle Vehicle 4. Data were obtained at Mach numbers of 5.3, 7.4, and 10.3, to support the venting analysis for both launch and entry conditions. These tests were the final tests in a series covering a Mach number range from 0.6 to 10.3. The model was instrumented with pressure orifices in the vicinity of the cargo bay door hinge and parting lines, and on the side of the fuselage at the crew compartment, and below the orbital maneuvering system pods at the aft compartment. The model was tested at angles of attack and sideslip consistent with expected divergencies from the nominal trajectory

    Study of factors affecting a combustion method for determining carbon in lithium hydride

    Get PDF

    Integrated transient thermal-structural finite element analysis

    Get PDF
    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses

    Transport of sulfur dioxide from the Asian Pacific Rim to the North Pacific troposphere

    Get PDF
    The NASA Pacific Exploratory Mission over the Western Pacific Ocean (PEM-West B) field experiment provided an opportunity to study sulfur dioxide (SO2) in the troposphere over the western Pacific Ocean from the tropics to 60°N during February–March 1993. The large suite of chemical and physical measurements yielded a complex matrix in which to understand the distribution of sulfur dioxide over the western Pacific region. In contrast to the late summer period of Pacific Exploratory Mission-West A (PEM-West A) (1991) over this same area, SO2showed little increase with altitude, and concentrations were much lower in the free troposphere than during the PEM-West B period. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2 contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. The combined data set suggests that SO2 above 8.5 km is transported from the surface but with aerosol sulfate being removed more effectively than SO2. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region

    On the Value of Online Learning for Radar Waveform Selection

    Full text link
    This paper attempts to characterize the kinds of physical scenarios in which an online learning-based cognitive radar is expected to reliably outperform a fixed rule-based waveform selection strategy, as well as the converse. We seek general insights through an examination of two decision-making scenarios, namely dynamic spectrum access and multiple-target tracking. The radar scene is characterized by inducing a state-space model and examining the structure of its underlying Markov state transition matrix, in terms of entropy rate and diagonality. It is found that entropy rate is a strong predictor of online learning-based waveform selection, while diagonality is a better predictor of fixed rule-based waveform selection. We show that these measures can be used to predict first and second-order stochastic dominance relationships, which can allow system designers to make use of simple decision rules instead of more cumbersome learning approaches under certain conditions. We validate our findings through numerical results for each application and provide guidelines for future implementations.Comment: 15 pages, 15 figures. Final version to appear in IEEE Transaction on Radar Systems. arXiv admin note: substantial text overlap with arXiv:2212.0059
    • …
    corecore