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INTEGRATED FINITE ELEMENT THERMAL-STRUCTURAL ANALYSIS
' WITH RADIATION HEAT TRANSFER

Earl A. Thornton and Pramote Dechaumphai
01d Dominion University
Norfolk, Virginia

and

Allan R. Wieting
NASA Langley Research Center
Hampton, Virginia

Abstract

An integrated approach for efficiently
coupling thermal and stress analyses of structures
with radiation heat transfer is presented. A new
integrated one dimensional element based on a
nodeless variable formulation is introduced.

Lumped and consistent formulations of the nonlinear
radiation heat transfer matrix are presented. The
accuracy of the integrated approach is assessed by
comparisons with analytical solutions and
conventional finite element thermal-structural
analyses. Results show that the nodeless variable
thermal element yields accuracy equivalent to a
higher order element but permits a common
discretization with a lower order congruent
structural element. The integrated element thus
provides improved accuracy and efficiency of
thermal stress analysis for structures with complex
temperature distributions.

Nomenclature

a surface absorptivity

A cross sectional area

(851 strain-displacement interpolation
matrix

[BT] temperature gradient interpolation
matrix .

c specific heat

(c] finite element capacitance matrix

[o] elasticity matrix

E modulus of elasticity

finite element nodal force vector
k thermal conductivity

[kla thermal conductivity matrix

(K] finite element stiffness matrix

[Kcie finite element conduction matrix

[KeJe finite element radiation matrix

1 length

L finite element length

{N] finite element interpolation function
matrix

[Ns] finite element displacement
interpolation function matrix

[Nyl finite element temperature
interpolation function matrix

p perimeter

q surface heating rate

{Q}e finite element heat load vector

t time

T temperature

T reference temperature for zero

stresses

displacement components

e finite element volume

Cartesian coordinate

al vector of thermal expansion
coefficients

€ surface emissivity or strain (eq. 12)

’] angular position, see Fig. 5

g Stefan-Boltzmann constant, stress

% stress component

P density

Subscripts

c conduction heat transfer

e finite element matrix or vector
q specified surface heating

r radiation heat transfer

S structural

T thermal

W

wall, see Fig. 2a

Superscript

T transpose of a matrix

Introduction

The NASA Langley Research Center is conducting
research programs for the development of structures
for space transportation vehicles and large
orbiting structures. Space transportation vehicles
must be designed to withstand repeated exposure to
the severe thermal environment of atmospheric
reentry. Orbiting structures of unprecedented size
must be designed to meet stringent dimensional
stability requirements during long term exposure to
the cyclical heating of earth orbit. Both designs
require detailed thermal-structural analyses that
present a significant challenge to existing
analysis capabilities. A common feature of the
thermal-stress analysis of both structures is
conduction heat transfer combined with significant
radiation heat transfer. Radiation heat transfer
analysis of structures is difficult because the
equations are inherently nonlinear and complex
structural geometries strongly influence radiation
heat exchanges.

Early developments in finite element
methodology led to the expectation that the method
would replace the finite difference-lumped
parameter thermal analysis method for general
structures because both thermal and structural
analysis could be accomplished efficiently with the
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finite element method. Another expectation was
that a common model could be used for both thermal
and structural analyses. These expectations have
not been met because: (1) the finite element
thermal analysis approach has not yet reached
parity with the finite difference-lumped parameter
method in capability and efficiency, and (2)
intrinsic differences between heat transfer and
structural problems often prohibit common models.

At the 21st and 22nd SDM Conferences, the
authors presented_an integrated thermal structural
analysis approach »2 which focused on finite
element methodology for efficiently coupling steady
state and transient linear thermal-structural
analysis. The approach was motivated by several
aerospace applications in which the structural
temperature distribution required a model more
complex than that required to determine the
structural response. The integrated approach was
developed for one dimensional, linear problems to
demonstrate feasibility. Thermal elements were
developed using a nodeless variable formulation
to yield exact steady state nodal and element
temperatures without requiring different
diseretization/modelling than the structural
analysis. Although the exact thermal elements
apply to several cases of one-dimensional
conduction and convection of practical importance,3
the elements are of limited value in analysis of
general aerospace structures particularly
structures exposed to radiation heat transfer. The
purpose of this paper is to demonstrate the
feasibility of the integrated thermal-structural
analysis approach to a more general class of
problems which include radiation heat transfer.

The integrated approach employs new thermal
finite elements which yield: (1) accurate nodal
and element temperatures, (2) a common
thermal-structural discretization, and (3) accurate
thermal "loads" for a rigorous thermal-stress
analysis. Step 3 is important because most finite
element structural analysis programs have
heretofore simply used nodal temperatures as input
data and based thermal forces on average element
temperatures. Incorporation of an accurate
temperature distribution in computation of the
thermal loads is an important step in obtaining
improved accuracy.

Characteristics of integrated
thermal-structural analysis with radiation heat
transfer are first discussed. Next, a new one
dimensional nodeless variable element applicable to
general problems is presented. Consistent and
lumped radiation conductance matrices are
discussed. Finally, the accuracy and efficiency of
the integrated approach is demonstrated by solving
three examples using the conventional and
integrated finite element approaches. In the first
example, the accuracy of the finite element thermal
solution is evaluated by comparison with an exact
radiation heat transfer solution. In the second
example, the accuracy of temperatures and stresses
are evaluated for a one dimensional rod. In a
final example, the approaches are compared for
temperature and deformation solutions of a
simplified orbiting space structure.

Integrated Thermal-Structural Analysis

Finite Element Analysis

Finite element (F.E.) formulations for
nonlinear, transient thermal problems can be
derived from the governing heat conduction equation
with radiation boundary conditions by the method of
weighted residuals.® In general, element
temperature T(x,y,z,t) and temperature gradients
are expressed in the form

7= ) (1a)
ey | - 1s3fre) (1b)
0 =

oT/ot T ¢

where {T(t)}, denotes a vector of element nodal
temperatures ‘as a function of time. For
simplicity, conduction with only specified surface
heating and radiation heat transfer will be
considered. Finite element thermal analyses for
other heat loads such as internal heat generation
and surface convection are presented in references
1-2. For transient thermal analysis the equations
for a typical element are

[C]e{f}e + [Kc]e{T}e + KeleiThe
= {ogte + {or)e

where the element matrices are expressed in terms
of integrals over an element volume Ve and surface
Se+ The element equations are

(2)

[cle = J ocliy 'O Jav (3a)
ke = Jye [BT]T[k][BT]dV (3b)
KelelTel  Jg o€t 1'ds (3¢)
{ogle = fse q[N1'ds (3d)
forfe = S, aarlt2as (3e)

A1l thermal parameters may be temperature dependent
in general but are assumed constant herein. ’
Radiating surfaces are assumed to be diffuse, gray
and opaque. (Diffuse surfaces reflect incident
radiation uniformly in all directions; gray
surfaces emit energy independent of wave length.
Opaque surfaces do not transmit or scatter
radiation.) The incident radiation may be from
several sources including: (1) distant directional
sources (e.g., solar heating), (2) exchanges
between surfaces with prescribed temperatures, and
(3) exchanges between surfaces whose temperatures
are unknown apriori. For simplicity only
directional radiant fluxes are considered herein.
The latter two possibilities require special
consideration because radiation exchanges between
surfaces must account for their geometrical
relationship (i.e., viewfactors) and reflected



radiation energy. Methods for considering these
additional complications appear in references 4-6.

The system matrices, after assembly from the
element matrices, constitute a nonlinear set of
equations because of the radiation heat transfer.
The radiation conductance matrix [Kplo, implicitly
defined by equation (3c), contains the effects of
radiation and has a significant effect upon the
thermal solution. The explicit form of [K.], can
be derived by applying the Newton-Raphsgn ne%hod of
solving nonlinear equations to eq. (2).% The
result, hereafter called the consistent radiation
conductance matrix, is

K = 4 f_oet® [N DN Jds (4)

The T3 term in the integrand of the preceding
equation causes the radiation conductance matrix to
bg temperature dependent and hence nonlinear. The
T° term also causes the evaluation of element
integrals to be more difficult than 1inear
capacitance or conduction matrices, eqs. (3a) and
(3b), respectively. These additional complexities
may be minimized through the use of a lumped
formulation® where the diagonal elements of [K.Je
are defined by

Kp,, = 4T;3 fs

4 e

oeN;ds (5)

and the off-diagonal elements are zero; the
subscript < denotes a typical row or column. This
approximation has practical benefits and is similar
to the lumped mass approximation used in structural
dynamics or Tumped capacitance approximation used
in conduction heat transfer. However, since eq.
(5) is an approximation, the accuracy of computed
temperatures may be degraded.

In finite element structural analysis, element
displacements {u} = [u,v,w]" are expressed as

{u} = o ucede (6)

where {u(t)}q denotes a vector of element nodal
displacements as a function of time. Structural
inertia effects are neglected, however, so that the
structural analysis consists of a sequence of
static analyses at selected time values in the
transient response, i.e., a quasi-static analysis.
The equations for a typical element with only
thermal loads are

[Kle {ule = {FT}e (7)

where the element equations are

Kle = [

Ve [B51T[D1[Bs 1dV (8a)

{Fr}e = J;e BsITI0{a}(T(x,y,2,t)
- Tref)dV

(8b)

The temperature distribution used in evaluating the
equivalent thermal load vector {Fr}o is defined

by eq. (la). The nodal force vector, eq. (8b), is

computed for temperature distributions at selected

time values, consequently the structural analysis
consists of a linear statics problem with multiple
load vectors. .

Inteqrated Analysis

To more fully develop the potential of the
finite element method for thermal stress analysis
the concept of integrated thermal-structural
analysis was proposed in reference 1. The approach
focuses on aerospace applications where normally
the thermal model would have to be more detailed
than the structural model. The objectives of the
approach are to provide more efficient coupling of
the thermal and structural analysis and improve the
accuracy of the thermal-stress analysis. The
approach is characterized by: (1) a common
discretization for the thermal and structural
analysis utilizing improved thermal elements to
predict more detailed temperature variations, (2)
fully compatible thermal and structural elements,
and (3) equivalent thermal loads computed from eq.
(8b) with temperature distributions from the
improved thermal elements. The key to the approach
is the development of new thermal elements which
predict more detailed element temperature
distributions while maintaining a common
discretization with standard structural elements.
In references 1 and 2, improved one-dimensional
elements were based on interpolation functions from
homogeneous and particular solutions to the
governing differential equations. This approach,
however, cannot generally be extended to more than
one dimension or to nonlinear problems because
closed-form solutions to the governing differential
equation cannot be obtained. For these more
general problems, approximate interpolation
functions based on the nodeless variable concept
are introduced. The thermal elements based on the
nodeless variable formulation and characteristics
(1)-(3) above are called integrated elements.

Integrated Elements

Conventional finite elements define unknown
variables only at the nodes. The nodal unknowns
used depend on continuity requirements for
convergence of the finite element solution. To
satisfy convergence requirements in heat conduction
problems it is sufficient to use temperature as the
nodal unknown; and in elasticity problems it is
sufficient to use displacement components as nodal
unknowns. In conventional elements the number of
element nodes determines the order of the element
interpolation functions. For instance, a
one-dimensional element with two nodes permits a
linear temperature variation, a one-dimensional
element with three nodes permits a quadratic
temperature variation, etc. The nodeless variable
concept’ removes this limitation by adding extra
unknowns as element variables to permit higher
order interpolation functions. Several such
variables may be associated with an element.
Reference 7 notes that the physical interpretation
of the nodeless variables may not be obvious.

Conventional and nodeless variable element
families are compared for one dimensional thermal
elements in Fig. 1. The conventional
one-dimensional element uses two nodes which
specifies a Tinear temperature distribution with
unknown nodal temperatures. In the nodeless
variable one dimensional element, an additional
variable is introduced to permit the quadratic




temperature shown. For this nodeless variable
element the temperature is expressed by eq. (la) as

T(x,t) = No(x)Tg(t) + Ny(x)Ty(t) + Na(x)Tp(t)  (9)

where To(t) is an unknown time-dependent nodeless
variable and Ty(t), To(t) are unknown
time-dependent nodal unknowns. The nodeless
variable Ty(t) has temperature units, but does not
represent ghe temperature at any point on the
element. References 1 and 3 show for steady-state
linear problems that Tg can be determined apriori
as a nodeless parameter for a given heat transfer
problem by deriving the interpolation functions
from solutions to the governing differential
equation. This approach yields exact nodal
temperatures and an exact variation of temperature
within an element. Reference 2 used the
interpolation functions from the exact steady-state
finite elements to solve transient problems by
regarding To(t) as an unknown nodeless variable.
Both approaches gave excellent results for
predicted temperatures, and when these temperatures
were utilized in the structural analysis, improved
accuracy for displacements and stresses were
achieved. Two disadvantages of exact interpolation
functions are: (1) limited generality since
closed-form exact solutions do not exist for either
two or three dimensional linear conduction problems
or nonlinear problems, and (2) heat load dependence
making combined heat load cases difficult.

To overcome these disadvantages, the
interpolation functions employed for the two node
thermal element shown in Figure 1 are polynomials
in a form suggested by the exact, linear conduction
elements of Reference 1. The interpolation
functions are,

Notx) = £ (1 - &

1- (10)

>

Ny (x)

Na(x) = &

where Ng(x) is one/fourth the interpolation
function for the center node of a conventional
quadratic element, and Ny, N, are the interpolation
functions of a conventional Tinear element. The
interpolation functions, eq. (10), are capable of
representing the same quadratic variation of
temperature as the quadratic interpolation
functions employed in a conventional element with
three nodes. In fact, if Tg = 4T3 - 2 (T} + Tp)
where T3 is the temperature at the central node of
a quadratic element, the interpolation functions
are identical. The advantages of using eq. (10)
rather than exact interpolation functions are: (1)
the approach can be generalized to two and three
dimensional or non-linear problems, and (2) the
same interpolation functions can be used for all
heat loads. The nodeless variable thermal element
with these interpolations thus provides higher
accuracy than a conventional linear element and is
congruent with the standard two node structural
element.

Element matrices for the nodeless variable
thermal elements are derived from egs. (3-4).
Element matrices [CJe, [K.Jo and {Qq}e are the same
for linear and nonlinear analyses:

Chy Chy C
00 %o 2
[Cle = Clo c]} c?z (11a)
€0 C21 Cpz
[koo 0 o
kele = [0 K7 K2 (11b)
0 K21 Ka2
Qo
gfe = Q1 (11c)
q
Q

The remaining matrices [K.J, and {Qr}e exist only
for nonlinear radiation hea% transfer and are fully
populated matrices like eq. (1la) and (11c),
respectively. The nodeless variable radiation
conductance matrix employed herein was derived from
the consistent radiation matrix given in eq. (4).
Element matrices are straightforward to evaluate
except for the radiation conductance matrix. This
integral was evaluated in closed-form using the
symbolic manipulation language MACSYMA.

Finite element displacement interpolation
functions, eq. (6), employ conventional nodal
displacements as unknowns. Consequently element
stiffness matrices computed from eq. (8a) are the
same as used in conventional structural analysis.
Element equivalent nodal forces are different,
however, because the nodeless variable temperature
interpolation functions, eq. (9), are used in the
evaluation of the integral for nodal forces, eq.
£8b). In general, element stresses can be computed

rom

{o} = 1 {e}- DHakT(x,y,2,t) - Trep) (12)

hence the improved temperature representation has a
direct effect upon element stress variations. For

the one dimensional rod element shown in Figure 1,

the element stress is computed from,

u, - u T, +7 T
- 2 1 2 0
ax— E(—-L—) - af ( + T

St ot ()

Equation (13), which is based on the one
dimensional nodeless variable temperature
interpolation function, eq. (9), yields the
constant stress required for rod element
equilibrium. It can be derived directly from the
rod differentjal equation and element temperature
distribution.l

For linear, transient heat conduction the
nodeless variable appgoach has been extended to two
dimensional elements.® The principle difference
between one and two dimensional elements is that
the two dimensional elements use additional
nodeless variables to insure continuity of
temperature along edges of adjacent elements. The
interpolation functions are similar to eq. (10).

Applications

The effectiveness of the integrated one
dimensional nodeless variable element is
demonstrated for three examples of conduction with




radiation heat transfer. The examples are: (1)
steady-state thermal analysis of a rod with surface
radiation, (2) steady-state thermal-stress analysis
of a rod with surface radiation, and (3) transient
thermal-stress analysis of a module of an orbiting
space truss. The first example compares finite
element computed temperatures with an analytical
solution. A1l three examples demonstrate the
relative accuracy of conventional elements with
Tinear interpolation functions and integrated
elements. In addition, the effect of consistent
and lumped radiation conductance matrices on the
conventional finite element solutions are compared
in each example.

In the first two steady-state examples, the
nonlinear equations are solved by Newton-Raphson
iteration. In the third example, the transient
nonlinear equations are solved by a Crank-Nicholson
time integration scheme combined with
Newton-Raphson iteration.

Infinite Rod with Surface Radiation

An infinite rod with surface radiation to
space (T, = 0) is shown in Fig. 2a. For
steady-state heat transfer, the energy equation is

2
dT _ gep 4 _
2 00 7% = 0 (14)

and the boundary conditions are

T(0) =T
! (15)
lim T(x) =0
X *w
For these boundary conditiong a closed form
solution to eq. (14) exists:
Tw
T(x}) = j (16)

3 2/3
9 geb.
1+\/1—0 KA W X

Rod temperatures (Fig. 2b) were computed from:
(1) the analytical solution, eq. (16), (2) a
conventional finite element model with consistent
radiation conductance matrices, (3) a conventional
finite element model with Tumped radiation
conductance matrices, and (4) a nodeless variable
finite element model. The finite element analysis
used the same mesh of ten equally spaced elements
for 0 < x < 1. The input data used appears in
reference 5. Hypothetical properties are used
which yield a highly nonlinear temperature
variation thereby providing a rigorous test for the
accuracy of the finite element solutions. For the
finite element solutions, the temperature computed
from eq. (16) at x = 1 was used as a specified
temperature. For all finite element models, the
Newton-Raphson iteration method required seven
iterations to converge for a maximum nodal
temperature change to less than 0.1 percent. This
convergence rate is representative of convergence
for the other examples also.

Temperatures computed with conventional finite
elements with either lumped or consistent radiation
matrices show only fair agreement with the

analytical solution for x < 0.5. Temperatures
computed by the nodeless variable elements show
excellent agreement with the "analytical solution
for all nodal temperatures. Temperatures between
nodes agree very well for 0.1 < x < 1, but for

0 < x < 0.1 the interpolated temperatures deviate
from the analytical solution indicating the need
for mesh refinement in the region of high
temperature gradients. Although a graduated mesh
would benefit all analyses, a mesh of 100
equal-length elements was used to permit comparison
with results presented in reference 5. Analysis
with 100 conventional elements (not shown) gave
excellent agreement with the analytical solution.
The largest error with lumped radiation matrices
was 0.264%, and the largest error with the
consistent radiation matrices was 0.137%.
refined mesh, the temperature distribution
predicted by the nodeless variable elements
coincided with the analytical solution over the
entire length with agreement to five significant
figures. The example demonstrates, as expected,
that the two-node nodeless variable element
predicts temperature distributions with accuracy
superior to the corresponding two-node linear
element. These results should be expected since
for the same mesh each nodeless variable element
utilizes an additional unknown.

For the

Fixed End Rod with Surface Radiation

A rod encased between two immovable walls is
shown in Fig. 3a. The rod has specified end
temperatures and is cooled by radiation to space
(T, = 0). The properties used are representative
of aluminum space truss members. Rod temperatures
were computed using conventional and integrated
elements, and the results are compared in Figure
3b. To serve as a reference, temperatures were
computed with a mesh of twenty conventional
elements. Temperatures computed from a two element
mesh of conventional and nodeless variable
(integrated) elements are compared with this
reference solution. The conventional elements with
either lumped or consistent radiation matrices give
only a fair approximation to rod temperatures
similar to the preceding example. The nodeless
variable elements predict the correct rod
temperature for the node at x/L = 0.5 and .give the
correct temperature distribution along the rod.
Figure 3b shows that additional conventional
elements are needed to represent the rod
temperature distribution accurately.

Rod displacements and stresses are compared in
Table 1. The rod center displacement is
overestimated by the two element conventional
models, but two nodeless variable elements give
excellent agreement with the reference solution.
Similar trends are noted for the stresses. The two
element conventional models overestimate the stress
by from 12 to 23 percent, but the two nodeless
variable elements predict the stress exactly.

These results show the importance of using correct
element temperature distributions in stress
calculations. The superior accuracy of the rod
displacement and stress produced by the integrated
approach is due to: (1) the almost exact nodal
temperature predicted by the thermal elements, and
(2) incorporation of the improved temperature
distribution in the calculation of the thermal
stress.



Module of an Orbiting Space Truss

A three member module of an orbiting space
truss (Fig. 4) is useful for evaluating
conventional and integrated thermal-structural
analysis in a problem of current research
interest. A typical truss member receives solar,
earth emitted and earth reflected heating and emits
thermal energy to space. Member to member
radiation exchanges are relatively small and are
neglected. In a geosynchronous orbit solar heating
predominates, and incident normal flux to a truss
member varies significantly as a member changes
orientation with respect to the solar flux vector.
As the orbiting structure enters and emerges from
the earth's shadow significant changes in incident
heating occur. Member temperatures and structural
deformations depend strongly on the time-dependent
heating and member material and surface
properties. To compare the thermal-structural
analysis capabilities of the conventional and
integrated elements, the truss module is assumed to
have nominal properties of aluminum. The
thermal-structural behavior of space trusses made
of aluminum and advanced composite materials such
as a graphite epoxy differ significantly. Aluminum
truss members have a more non-uniform temperature
distribution and a larger coefficient of thermal
expansion. The integrated elements presented
herein are effective for analysis of aluminum space
trusses, but neither the integrated elements nor
conventional elements are efficient for analysis of
composite material space trusses. Temperature
distributions along these truss members are so
nearly uniform that an analysis employing
isothermal elements is the the most effective
approach.10 Further details of thermal stress
analysis of orbiting trusses with composite
material members appear in references 11-12,

Temperature distributions for the three member
truss module at a typical orbital position are
shown in Fig. 5. To serve as a reference solution,
a refined mesh of ten conventional elements per
member was first used to compute member
temperatures. Then member temperatures were
computed with: (1) one conventional element per
member with consistent radiation conductance
matrices, (2) one conventional element per member
with lumped radiation conductance matrices, and (3)
one nodeless variable element per member.

The conventional elements did not give a good
representation of interior member temperatures
although the conventional elements with a lumped
radiation matrix did predict nodal temperatures
very well. The nodeless variable elements
predicted member temperature distributions and
nodal temperature very accurately with small
deviations from the reference solution.

Histories of a typical member elongation,
u(L,t), for one orbit are compared (Fig. 6) for the
various finite element models. The member
elongation as computed from the one element per
member conventional model temperature distributions
show up to 44 percent deviation from the reference
solution. These discrepencies arise because the
linear temperature distributions predicted by the
conventional elements (Fig. 5) give a poor
representation of the average member temperature.
The conventional element with lumped radiation
matrix, for instance, predicts nodal temperatures
quite well, but it gives poor elongation

predictions because it is based on average element
temperatures. In contrast, since the nodeless
variable elements represent temperature
distributions very accurately, the elongation
predicted from these temperatures shows excellent
agreement with the reference solution with the
largest discrepancy less than 1 percent.

The examples demonstrate the capability of the
integrated approach for one dimensional elements.
The use of the nodeless variable interpolation
functions for the combination of conduction with
radiation for steady state and nonlinear transient
examples validate the potential of the approach.
For other heat transfer cases, the temperature
interpolation functions, eq. (9), and stress
formula, eq. (13), yield similar results.

Concluding Remarks

An integrated approach for efficiently
coupling thermal and stress analysis of structures
with radiation heat transfer is presented. The
paper focuses on applications where the thermal
model would normally have to be more detailed than
the structural model. An improved thermal element
is developed employing a nodeless variable
formulation. The element predicts more detailed
temperature distributions than conventional
elements while maintaining a common discretization
with conventional structural elements. The more
detailed temperature distribution is employed in
the finite element structural analysis to produce
more accurate displacements and stresses.

The integrated thermal-structural analysis
approach is briefly described. Lumped and
consistent formulations of the nonlinear radiation
heat transfer matrix are presented and discussed.
Nodeless variable element interpolation functions
are presented for a one dimensional rod element.
The role of the interpolation functions in the
thermal-stress analysis is described.

Three one-dimensional examples of simple
structures with radiation heat transfer are
presented to illustrate the approach: (1) thermal
analysis of an infinite rod with radiation, (2)
thermal-stress analysis of a finite rod with
surface radiation, and (3) thermal-stress analysis
of a module of an\orbiting space truss. The
examples show: (f) the capability of the nodeless
variable element to predict more detailed
temperature variations than conventional elements,
and (2) that more accurate displacement and stress
predictions are produced when the improved
temperatures are incorporated consistently in the
structural model. For the one dimensional
examples, the thermal element employed two nodes
but allowed a quadratic variation of temperature by
use of a nodeless variable. The two node thermal
element thus permitted a common model with standard
two node structural elements.

Integrated elements thus provide capability to
improve accuracy and efficiency of thermal-stress
analysis of structures with complex temperature
distributions. The examples presented in the paper
validate the approach for general one dimensional
thermal stress problems but additional research is
required to validate the approach for two
dimensions.
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Table 1 Comparative nodal displacements and thermal stress for a fixed end rod with surface radiation

Disp., mm Diff. in
Analysis Type _ u(x = L/2) Stress, kPa Stresses
Conventional,
Consistent (20 F.E.) -.35 -134.24 -
Consistent (2 F.E.) -.40 -150.59 12.18%
Lumped (2 F.E.) -.40 -164.77 22.74%
Nodeless Variable (2 F.E.) -.35 -134.17 .05%
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element solutions for infinite rod
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Fig. 3 Conventional and nodeless variable finite
element solutions for a fixed end rod
radiating to space.
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Fig. 5 Comparative temperature distribution of a

three member orbiting truss at® = 60
degrees.
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Fig. 6 Comparative displacements of a three member
orbiting truss.
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