209 research outputs found
Connecting minds and sharing emotions through mimicry: A Neurocognitive Model of Emotional Contagion
Action Contro
The parenting task: parent's concerns and where they would seek help
Governments are concerned to promote positive parenting but it is difficult to know how and where to target the necessary support. How should we listen to the concerns expressed by parents themselves? Social work and health care professionals and those involved in developing parenting programmes tend to base their interventions on their experiences with families already in crisis. This paper reports on a survey of the views of two groups of parents: a community sample and a small group of parents involved in a young parent's project. Issues, which concern the parents, are identified as well as consideration of which agencies might be best placed to address these. Parents were most likely to approach their children's school or doctor for information, advice, or support. Parents were found to be reluctant to approach social work agencies
Reply to Mathot and Naber: Neuroimaging shows that pupil mimicry is a social phenomenon
Social decision makingAction Contro
A comparative framework of inter-individual coordination and pair-bonding
Inter-individual coordination (IIC) at the behavioral and physiological level, and its association with courtship and pair-bond maintenance, have been receiving increased attention in the scientific literature in recent years. However, there is no integrative framework combining the plethora of findings in humans and nonhuman species yet that addresses the evolutionary origins of IIC. Here, we take a comparative approach and review findings on the link between IIC and pair-bond formation, maintenance, and bi-parental care. Our review suggests that across socially monogamous species, IIC – at a behavioral and physiological level – is correlated with the likelihood of forming and retaining a pair-bond, and with reproductive success. We expand on the pair-bonding hypothesis by stating that higher levels of IIC might be beneficial for relationship quality and bi-parental care and, as a result, might also become a preferred trait in the formation and maintenance of a pair-bond. We further discuss the key questions to disentangle the evolution of IIC based on this hypothesis
Differential expression of immunity-related genes in larval Manduca sexta tissues in response to gut and systemic infection
IntroductionThe midgut epithelium functions as tissue for nutrient uptake as well as physical barrier against pathogens. Additionally, it responds to pathogen contact by production and release of various factors including antimicrobial peptides, similar to the systemic innate immune response. However, if such a response is restricted to a local stimulus or if it appears in response to a systemic infection, too is a rather underexplored topic in insect immunity. We addressed the role of the midgut and the role of systemic immune tissues in the defense against gut-borne and systemic infections, respectively.MethodsManduca sexta larvae were challenged with DAP-type peptidoglycan bacteria – Bacillus thuringiensis for local gut infection and Escherichia coli for systemic stimulation. We compared the immune response to both infection models by measuring mRNA levels of four selected immunity-related genes in midgut, fat body, hematopoietic organs (HOs), and hemocytes, and determined hemolymph antimicrobial activity. Hemocytes and HOs were tested for presence and distribution of lysozyme mRNA and protein.ResultsThe midgut and circulating hemocytes exhibited a significantly increased level of lysozyme mRNA in response to gut infection but did not significantly alter expression in response to a systemic infection. Conversely, fat body and HOs responded to both infection models by altered mRNA levels of at least one gene monitored. Most, but not all hemocytes and HO cells contain lysozyme mRNA and protein.DiscussionThese data suggest that the gut recruits immune-related tissues in response to gut infection whereas systemic infections do not induce a response in the midgut. The experimental approach implies a skewed cross-talk: An intestinal infection triggers immune activity in systemic immune organs, while a systemic infection does not elicit any or only a restricted immune response in the midgut. The HOs, which form and release hemocytes in larval M. sexta, i) synthesize lysozyme, and ii) respond to immune challenges by increased immune gene expression. These findings strongly suggest that they not only provide phagocytes for the cellular immune response but also synthesize humoral immune components
Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery
Characterization of Rhodamine-123 as a Tracer Dye for Use In In vitro Drug Transport Assays
Fluorescent tracer dyes represent an important class of sub-cellular probes and allow the examination of cellular processes in real-time with minimal impact upon these processes. Such tracer dyes are becoming increasingly used for the examination of membrane transport processes, as they are easy-to-use, cost effective probe substrates for a number of membrane protein transporters. Rhodamine 123, a member of the rhodamine family of flurone dyes, has been used to examine membrane transport by the ABCB1 gene product, MDR1. MDR1 is viewed as the archetypal drug transport protein, and is able to efflux a large number of clinically relevant drugs. In addition, ectopic activity of MDR1 has been associated with the development of multiple drug resistance phenotype, which results in a poor patient response to therapeutic intervention. It is thus important to be able to examine the potential for novel compounds to be MDR1 substrates. Given the increasing use rhodamine 123 as a tracer dye for MDR1, a full characterisation of its spectral properties in a range of in vitro assay-relevant media is warranted. Herein, we determine λmax for excitation and emission or rhodamine 123 and its metabolite rhodamine 110 in commonly used solvents and extraction buffers, demonstrating that fluorescence is highly dependent on the chemical environment: Optimal parameters are 1% (v/v) methanol in HBSS, with λex = 505 nm, λem = 525 nm. We characterise the uptake of rhodamine 123 into cells, via both passive and active processes, and demonstrate that this occurs primarily through OATP1A2-mediated facilitated transport at concentrations below 2 µM, and via micelle-mediated passive diffusion above this. Finally, we quantify the intracellular sequestration and metabolism of rhodamine 123, demonstrating that these are both cell line-dependent factors that may influence the interpretation of transport assays
- …