2,078 research outputs found

    Non parametric reconstruction of distribution functions from observed galactic disks

    Full text link
    A general inversion technique for the recovery of the underlying distribution function for observed galactic disks is presented and illustrated. Under the assumption that these disks are axi-symmetric and thin, the proposed method yields the unique distribution compatible with all the observables available. The derivation may be carried out from the measurement of the azimuthal velocity distribution arising from positioning the slit of a spectrograph along the major axis of the galaxy. More generally, it may account for the simultaneous measurements of velocity distributions corresponding to slits presenting arbitrary orientations with respect to the major axis. The approach is non-parametric, i.e. it does not rely on a particular algebraic model for the distribution function. Special care is taken to account for the fraction of counter-rotating stars which strongly affects the stability of the disk. An optimisation algorithm is devised -- generalising the work of Skilling & Bryan (1984) -- to carry this truly two-dimensional ill-conditioned inversion efficiently. The performances of the overall inversion technique with respect to the noise level and truncation in the data set is investigated with simulated data. Reliable results are obtained up to a mean signal to noise ratio of~5 and when measurements are available up to 4Re4 R_{e}. A discussion of the residual biases involved in non parametric inversions is presented. Prospects of application to observed galaxies and other inversion problems are discussed.Comment: 11 pages, 13 figures; accepted for publication by MNRA

    Non-parametric reconstruction of distribution functions from observed galactic discs

    Get PDF
    A general inversion technique for the recovery of the underlying distribution function for observed galactic discs is presented and illustrated. Under the assumption that these discs are axisymmetric and thin, the proposed method yields a unique distribution compatible with all the observables available. The derivation may be carried out from the measurement of the azimuthal velocity distribution arising from positioning the slit of a spectrograph along the major axis of the galaxy. More generally, it may account for the simultaneous measurements of velocity distributions corresponding to slits presenting arbitrary orientations with respect to the major axis. The approach is non-parametric, i.e. it does not rely on a particular algebraic model for the distribution function. Special care is taken to account for the fraction of counter-rotating stars, which strongly affects the stability of the disc. An optimization algorithm is devised — generalizing the work of Skilling &38; Bryan — to carry this truly two-dimensional ill-conditioned inversion efficiently. The performance of the overall inversion technique with respect to the noise level and truncation in the data set is investigated with simulated data. Reliable results are obtained up to a mean signal-to-noise ratio of 5, and when measurements are available up to 4 Re. A discussion of the residual biases involved in non-parametric inversions is presented. The prospects of application of the algorithm to observed galaxies and other inversion problems are discusse

    Massive spheroids can form in single minor mergers

    Get PDF
    Accepted for publication in MNRAS, 12 pages, 6 figuresUnderstanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M ∗ > 10 11M) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.Peer reviewedFinal Accepted Versio

    Propagators in Lagrangian space

    Full text link
    It has been found recently that propagators, e.g. the cross-correlation spectra of the cosmic fields with the initial density field, decay exponentially at large-k in an Eulerian description of the dynamics. We explore here similar quantities defined for a Lagrangian space description. We find that propagators in Lagrangian space do not exhibit the same properties: they are found not to be monotonic functions of time, and to track back the linear growth rate at late time (but with a renormalized amplitude). These results have been obtained with a novel method which we describe alongside. It allows the formal resummation of the same set of diagrams as those that led to the known results in Eulerian space. We provide a tentative explanation for the marked differences seen between the Eulerian and the Lagrangian cases, and we point out the role played by the vorticity degrees of freedom that are specific to the Lagrangian formalism. This provides us with new insights into the late-time behavior of the propagators.Comment: 14 pages, 5 figure

    Stellar Content from high resolution galactic spectra via Maximum A Posteriori

    Full text link
    This paper describes STECMAP (STEllar Content via Maximum A Posteriori), a flexible, non-parametric inversion method for the interpretation of the integrated light spectra of galaxies, based on synthetic spectra of single stellar populations (SSPs). We focus on the recovery of a galaxy's star formation history and stellar age-metallicity relation. We use the high resolution SSPs produced by PEGASE-HR to quantify the informational content of the wavelength range 4000 - 6800 Angstroms. A detailed investigation of the properties of the corresponding simplified linear problem is performed using singular value decomposition. It turns out to be a powerful tool for explaining and predicting the behaviour of the inversion. We provide means of quantifying the fundamental limitations of the problem considering the intrinsic properties of the SSPs in the spectral range of interest, as well as the noise in these models and in the data. We performed a systematic simulation campaign and found that, when the time elapsed between two bursts of star formation is larger than 0.8 dex, the properties of each episode can be constrained with a precision of 0.04 dex in age and 0.02 dex in metallicity from high quality data (R=10 000, signal-to-noise ratio SNR=100 per pixel), not taking model errors into account. The described methods and error estimates will be useful in the design and in the analysis of extragalactic spectroscopic surveys.Comment: 31 pages, 23 figures, accepted for publication in MNRA

    Probing magnetic fields with multi-frequency polarized synchrotron emission

    Get PDF
    We investigate the problem of probing the local spatial structure of the magnetic field of the interstellar medium using multi-frequency polarized maps of the synchrotron emission at radio wavelengths. We focus in this paper on the three-dimensional reconstruction of the largest scales of the magnetic field, relying on the internal depolarization (due to differential Faraday rotation) of the emitting medium as a function of electromagnetic frequency. We argue that multi-band spectroscopy in the radio wavelengths, developed in the context of high-redshift extragalactic HI lines, can be a very useful probe of the 3D magnetic field structure of our Galaxy when combined with a Maximum A Posteriori reconstruction technique. When starting from a fair approximation of the magnetic field, we are able to recover the true one by using a linearized version of the corresponding inverse problem. The spectral analysis of this problem allows us to specify the best sampling strategy in electromagnetic frequency and predicts a spatially anisotropic distribution of posterior errors. The reconstruction method is illustrated for reference fields extracted from realistic magneto-hydrodynamical simulations

    The distribution of nearby stars in phase space mapped by Hipparcos: I. The potential well and local dynamical mass

    Full text link
    Hipparcos data provide the first, volume limited and absolute magnitude limited homogeneous tracer of stellar density and velocity distributions in the solar neighbourhood. The density of A-type stars more luminous than Mv=2.5M_v=2.5 can be accurately mapped within a sphere of 125 pc radius, while proper motions in galactic latitude provide the vertical velocity distribution near the galactic plane. The potential well across the galactic plane is traced practically hypothesis-free and model-free. The local dynamical density comes out as \rho_{0}=0.076 \pm0.015~M_{\sun}~{pc}^{-3} a value well below all previous determinations leaving no room for any disk shaped component of dark matter.Comment: 24 pages, 13 figures, latex. To appear in A&A (main journal
    corecore