A general inversion technique for the recovery of the underlying distribution
function for observed galactic disks is presented and illustrated. Under the
assumption that these disks are axi-symmetric and thin, the proposed method
yields the unique distribution compatible with all the observables available.
The derivation may be carried out from the measurement of the azimuthal
velocity distribution arising from positioning the slit of a spectrograph along
the major axis of the galaxy. More generally, it may account for the
simultaneous measurements of velocity distributions corresponding to slits
presenting arbitrary orientations with respect to the major axis. The approach
is non-parametric, i.e. it does not rely on a particular algebraic model for
the distribution function. Special care is taken to account for the fraction of
counter-rotating stars which strongly affects the stability of the disk. An
optimisation algorithm is devised -- generalising the work of Skilling & Bryan
(1984) -- to carry this truly two-dimensional ill-conditioned inversion
efficiently. The performances of the overall inversion technique with respect
to the noise level and truncation in the data set is investigated with
simulated data. Reliable results are obtained up to a mean signal to noise
ratio of~5 and when measurements are available up to 4Re. A discussion of
the residual biases involved in non parametric inversions is presented.
Prospects of application to observed galaxies and other inversion problems are
discussed.Comment: 11 pages, 13 figures; accepted for publication by MNRA