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A B S T R A C T
A general inversion technique for the recovery of the underlying distribution function for
observed galactic discs is presented and illustrated. Under the assumption that these discs
are axisymmetric and thin, the proposed method yields a unique distribution compatible
with all the observables available. The derivation may be carried out from the measurement
of the azimuthal velocity distribution arising from positioning the slit of a spectrograph
along the major axis of the galaxy. More generally, it may account for the simultaneous
measurements of velocity distributions corresponding to slits presenting arbitrary
orientations with respect to the major axis. The approach is non-parametric, i.e. it does
not rely on a particular algebraic model for the distribution function. Special care is taken
to account for the fraction of counter-rotating stars, which strongly affects the stability of
the disc.

An optimization algorithm is devised – generalizing the work of Skilling & Bryan – to carry
this truly two-dimensional ill-conditioned inversion efficiently. The performance of the overall
inversion technique with respect to the noise level and truncation in the data set is investigated
with simulated data. Reliable results are obtained up to a mean signal-to-noise ratio of 5, and
when measurements are available up to 4Re. A discussion of the residual biases involved in
non-parametric inversions is presented. The prospects of application of the algorithm to
observed galaxies and other inversion problems are discussed.

Key words: methods: data analysis – methods: numerical – galaxies: general – galaxies:
kinematics and dynamics.

1 I N T RO D U C T I O N

In years to come, accurate kinematical measurement of nearby disc
galaxies will be achievable with high-resolution spectroscopy.
Measurement of the observed line profiles will yield relevant data
with which to probe the underlying gravitational nature of the
interaction holding the galaxy together. Indeed the assumption that
the system is stationary relies on the existence of invariants, which
put severe constraints on the possible velocity distributions. This is
formally expressed by the existence of an underlying distribution
function which specifies the dynamics completely. The determina-
tion of realistic distribution functions which account for observed
line profiles is therefore required in order to understand of the
structure and dynamics of spiral galaxies.

Inversion methods have been implemented for spheroids
(globular clusters or elliptical galaxies) by Merrifield (1991),

Dejonghe (1993), Merritt (1996, 1997), Merritt & Tremblay
(1993, 1994), Emsellem, Monnet & Bacon (1994), Dehnen
(1995), Kuijken (1995) and Qian (1995). Indeed, for spheroids,
the surface density alone yields access to the even component of a
two-integral distribution function which may account for the inter-
nal dynamics (while the odd component can be recovered from the
mean azimuthal flow). However, the corresponding recovered
distribution might not be consistent with higher Jeans moments,
since the equilibria may involve three (possibly approximate)
integrals. The inversion problem corresponding to a flattened
spheroid which is assumed to have two or three (Stakel-based)
integrals has been addressed recently by Dejonghe et al. (1996) and
is illustrated by NGC 4697. Non-parametric approaches have in
particular been used with success by Merritt & Gebhardt (1994) and
Gebhardt et al. (1996) to solve the dynamical inverse problem for
the density in spherical geometry. If the spheroid is seen exactly
edge on, Merritt (1996) has devised a method which allows one to
recover simultaneously the underlying potential.

Mon. Not. R. Astron. Soc. 301, 419–434 (1998)

q 1998 RAS

*E-mail: pichon@astro.unibas.ch



Here the inversion problem for thin and round discs is addressed
for cases where symmetry ensures integrability. In this context, the
inversion problem is truly two-dimensional and requires special
attention for the treatment of quasi-radial orbits in the inner part of
the galaxy.

By Jeans’ theorem the steady-state mass-weighted distribution
function describing a flat galaxy must be of the form f ¼ f ð«; hÞ,
where the specific energy, «, and the specific angular momentum, h,
are given by

« ¼ 1
2ðv

2
R þ v2

fÞ ¹ w ; h ¼ R vf : ð1Þ

Here vR and vf are the star radial and angular velocities respectively
of stars confined to a plane and wðRÞ is the gravitational potential of
the disc. The azimuthal velocity distribution, FfðR; vfÞ, follows
from this distribution according to

FfðR; vfÞ ¼

�
f ð«; hÞ dvR ; ð2Þ

where the integral is over the region 1=2 × ðv2
R þ v2

fÞ < w

corresponding to bound orbits. Pichon & Lynden-Bell (1996)
demonstrated that, in the case of a thin round galactic disc, the
distribution can be analytically inverted to yield a unique f ð«; hÞ

provided the potential wðRÞ is known. The velocity distribution
FfðR; vfÞ can be estimated – within a multiplicative constant –
from line-of-sight velocity distribution (LOSVD) data obtained by
long-slit spectroscopy when the slit is aligned with the major axis of
the galactic disc projected on to the sky. Similarly, the rotation curve
observed in H i gives in principle access to the underlying potential.
More generally, simultaneous measurements of velocity distribu-
tions are derived with slits presenting arbitrary orientations with
respect to the major axis, as discussed in Appendix C.

The inversion of equation (2) is known to be ill-conditioned: a
small departure in the measured data (e.g. caused by noise) may
produce very different solutions since these are dominated by
artefacts corresponding to the amplification of noise. Some kind
of balance must therefore be found between the constraints imposed
on the solution, in order to deal with these artefacts on the one hand
and the degree of fluctuations consistent with the assumed informa-
tion content of the signal on the other hand (i.e. the worse the data
quality, the lower the informative content of the solution and the
greater the constraint on the restored distribution so as to avoid an
over-interpretation of the data). Finding such a balance is called the
‘regularization’ of the inversion problem (e.g. Wahba & Wendel-
berger 1979) and methods implementing adaptive level of regular-
ization are described as ‘non-parametric’.

Under the assumption that these discs are axisymmetric and thin,
the proposed non-parametric methods described in this paper yield
in principle a unique distribution: the smoothest solution consistent
with all the available observables, the knowledge of the level of
noise in each measurement and some objective physical constraints
that a satisfactory distribution should fulfil.

Section 2 presents all relevant theoretical aspects of regulariza-
tion and non-parametric inversion for galactic discs distributions.
Section 3 present the various algorithms and the corresponding
numerical techniques, which we implemented in steps to carry
efficiently this two-dimensional minimization. It corresponds in
essence to an extension of the work of Skilling & Bryan (1984) for
maximum entropy to other penalizing functions that are more
relevant in this context. All techniques are implemented in
Section 4 on simulated data arising when the slit of the spectrograph
is aligned with the long axis of the projected disc. A discussion
follows.

2 N O N - PA R A M E T R I C I N V E R S I O N F O R F L AT
A N D RO U N D D I S C S

The non-parametric inversion problem involves finding the best
solution to equation (2) for the distribution function when only
discretized and noisy measurements of FfðR; vfÞ are available.

A distinction between parametric and non-parametric descrip-
tions may seem artificial: it is only a function of how many
parameters are needed to describe the model with respect to the
number of independent measurements. In a parametric model there
is a small number of parameters compared with the number of data
samples. This makes the inversion for the parametric model some-
what regularized, i.e. well-conditioned. Once the model has been
chosen, however, there is no way to control the level of regulariza-
tion and the inversion will always produce a solution, whether the
parametric model and its implicit level of regularization is correct or
not. In a non-parametric model, as a result of the discretization,
there is also a finite number of parameters but it is comparable to
and usually larger than the number of data samples. In this case, the
amount of information extracted from the data is controlled
explicitely by the regularization. Here the latter non-parametric
method is therefore preferred, because no particular unknown
physical model for disc distributions is to be favoured.

2.1 The discretized kinematic integral equation

Since « is an even function of vR and since the relation between vR

and « is one-to-one on the interval vR [ ½0;∞Þ and for given R and
vf, equation (2) can be rewritten explicitly as

FfðR; vfÞ ¼
���
2

p �0
¹YðR;vfÞ

f ð«;R vfÞ�������������������������
« þ YðR; vfÞ

p d« ; ð3Þ

where the effective potential is given by

YðR; vfÞ ¼ wðRÞ ¹
1
2

v2
f : ð4Þ

For a given angular momentum h the minimum specific energy is

«minðhÞ ¼ min
R[½0;∞Þ

n h2

2R2 ¹ wðRÞ
o
: ð5Þ

From equation (3), the generic ill-conditioning of equation (2)
appears clearly, since the integral relation connecting the azimuthal
velocity distribution and the underlying distribution is an Abel
transform (i.e. a half derivative).

Given the error level in the measurements and the finite number
of data points Ndata, f ð«; hÞ is derived by fitting the data with some
model. Since the number of physically relevant distributions f ð«; hÞ

is very large, a small number of parameters cannot describe the
solution without further assumptions (i.e. other than the assumption
that the disc is round and thin). A general approach must therefore
be adopted; for instance, the solution can be described by its
projection on to a basis of functions fekð«; hÞ; k ¼ 1; . . . ;Ng:

f ð«; hÞ ¼
XN

k¼1

fk ekð«; hÞ : ð6Þ

The parameters to fit are the weights fk. In order to fit a wide variety
of functions, the basis must be very large; consequently the
description of f ð«; hÞ is no longer parametric but rather non-
parametric.

In order to account for the fact that the equilibrium should not
incorporate unbound stars it is best to define the functions ekð«; hÞ of
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equation (6) so that they are identically zero outside the interval
ð«; hÞ [ ½«minðhÞ; 0ÿ ×R. It is convenient to rectify this interval
while replacing the integration over specific energy in equation (3)
by an integration with respect to

h ¼ 1 ¹
«

«minðhÞ
; ð7Þ

and to use a new basis of functions

êkðh; hÞ ; ek

�
ð1¹hÞ «min ðhÞ; h

�
;

which are zero outside the interval ðh; hÞ [ ½0; 1ÿ ×R. Here h is
some measure of the eccentricity of the orbit. Using these new basis
functions, the distribution function becomes

f̂ ðh; hÞ ; f
�
ð1¹hÞ «minðhÞ; h

�
¼
XN

k¼1

fk êkðh; hÞ : ð8Þ

Another important advantage of this reparametrization is that the
distributions f̂ ðh; hÞ can be assumed to be smoother functions along
h and h since these distributions correspond to the equilibria of
relaxed and cool systems which have gone through some level of
violent relaxation in their formation processes and where most
orbits are almost circular. Note nonetheless that this assumption is
somewhat subjective and introduces some level of bias correspond-
ing to what is considered to be a good distribution function, as will
be discussed in Section 5. Clearly the assumption that the distribu-
tion function should be smooth (i.e. without strong gradients) in the
variable h yields different constraints on the sought solution from
assuming that it should be smooth in the variable «.

Real data correspond to discrete measurements Ri and vf j of R
and vf respectively. Following the non-parametric expansion in
equation (8), equation (3) now becomes

Fi; j ; FfðRi; vf jÞ ¼
XN

k¼1

ai; j;k fk ; ð9Þ

with

ai; j;k ¼
������������������
¹2«min i; j

p �1

hc i; j

êkðh;Ri vf jÞ�����������������
h ¹ hci; j

p dh ; ð10Þ

where
«mini; j ; «minðRi vf jÞ ; hci; j ; 1 þ YðRi; vfjÞ=«mini; j : ð11Þ

The implementation of this linear transformation for linear
B-splines is given in Appendix A. Since the relations between
FfðR; vfÞ and f ðh; hÞ or f̂ ðh; hÞ are linear, equation (9) – the
discretized form of the integral equation (2) – can be written in a
matrix form by grouping index i with index j:

F ¼ a·f : ð12Þ

The problem of solving equation (2) then becomes a linear
inversion problem.

2.2 Maximum penalized likelihood

In order to model a wide range of distributions f̂ ðh; hÞ with good
accuracy, the basis fêkðh; hÞ; k ¼ 1; . . . ;Ng must be sufficiently
general (otherwise the solutions will be biased by the choice of
the basis just as a parametric approach is biased by the choice of the
model). The inversion should therefore be regularized and
performed so as to avoid physically irrelevant solutions. Indeed,
being a distribution, f̂ ðh; hÞ must for instance be positive and
normalized. Finally, the inversion should provide some level of
flexibility to account for the fact that the sought distribution might
have a critical behaviour for some fraction of phase space, such as

that corresponding to radial orbits. It should also cope with
incomplete data sets and should yield some means of extrapolation.

In order to address these specificities let us explore techniques
able to perform a reliable practical inversion of this ill-conditioned
problem, and put the method described in this paper into context.
The Bayesian description provides a suitable framework to discuss
how the practical inversion of equation (12) should be performed.

2.2.1 Bayesian approach

When dealing with real data, noise must be accounted for: instead of
the exact solution of equation (9), it is more robust to seek the best
solution compatible with the data and, possibly, additional con-
straints. A criterion allowing us to select such a solution is provided
by probability analysis. Indeed, given the measured data F̃, one
would like to recover the most probable underlying distribution f.
This is achieved by maximizing the probability of the distribution f
given the data F̃, Prðf j F̃Þ, with respect to f. According to Bayes’
theorem, Prðf j F̃Þ can be rewritten as

Prðf j F̃Þ ¼
PrðF̃ j fÞ PrðfÞ

PrðF̃Þ
; ð13Þ

where PrðF̃ j fÞ is the probability of the data F̃ given that it should
obey the distribution f, while PrðF̃Þ and PrðfÞ are respectively the
probability of the data F̃ and the probability of the distribution f.
Since PrðF̃Þ does not depend on f, maximizing Prðf j F̃Þ with respect
to f is equivalent to minimizing

QðfÞ ¼ LðfÞ þ mRðfÞ ; ð14Þ

with

LðfÞ ¼ ¹a log ½PrðF̃ j fÞÿ þ c ; ð15Þ

mRðfÞ ¼ ¹a log ½PrðfÞÿ þ c0
; ð16Þ

with a > 0 and where c and c0 are constants that account for any
contribution which does not depend on f. Minimizing the like-
lihood, LðfÞ, enforces consistency of the model with the data while
minimizing RðfÞ tends to give the ‘most probable solution’ when no
data is available, as discussed in Section 2.2.3.

2.2.2 Maximum likelihood

Minimization of LðfÞ alone in equation (14) yields the maximum
likelihood solution. The exact expression of ¹log ½PrðF̃ j fÞÿ can
usually be derived and depends on the noise statistics. For instance,
assuming that the noise in the measured data follows a normal law,
maximizing the likelihood of the data is obtained by minimizing the
x2 of the data:

¹log ½PrðF̃ j fÞÿ ¼
1
2
x2 þ c00 with x2 ;

X
i; j

ðFi; j ¹ F̃i; jÞ
2

Var ðF̃i; jÞ
;

where Fi; j is the model of Ff given by equation (9) and F̃i; j denotes
the values of Ff at (Ri; vi jÞ. Minimization of x2 is known as chi-
squared fitting. Throughout this paper and for the sake of clarity,
Gaussian noise is assumed, while defining the likelihood term by

LðfÞ ¼ x2ðfÞ ¼
X

i; j

ðFi; j ¹ F̃i; jÞ
2

Var ðF̃i; jÞ
; ð17Þ

(which incidentally corresponds to the choice a ¼ 2 in equation 15).
In the limit of a large number of independent measurements, Ndata,
x2 follows a normal law with an expected value and a variance given
by

Expectðx2Þ ¼ Ndata ; Var ðx2Þ ¼ 2 Ndata : ð18Þ
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It follows that any distribution, f, yielding a value of x2 in the range
Ndata 6

�������������
2 Ndata

p
is perfectly consistent with the measured data:

none of these distributions can be said to be better than others on the
basis of the measured data alone.

For a parametric description and provided that the number of
parameters is small compared with Ndata, the region around the
minimum of x2 is usually very narrow. In this case, x2 fitting may be
sufficiently robust to produce a reliable solution (though this
conclusion depends on the noise level and assumes that the para-
metric model is correct).

In a non-parametric approach, given the functional freedom left
in the possible distributions, it is likely that the value of the x2 can
be made arbitrarily small, i.e. much smaller than Ndata. Conse-
quently, the solution that minimizes x2 is not reliable: it is too good
to be true! In other words, solely minimizing x2 in a non-parametric
description leads to an over-interpretation of the data: because of
the ill-conditioned nature of the problem, many features in the
solution are likely to be artefacts produced by amplification of noise
or numerical rounding errors.

2.2.3 Regularization

Minimizing the likelihood term forces the model to be consistent
with some objective information: the measured data. Nevertheless,
this approach provides no means of selecting a particular solution
from among all those which are consistent with the data [i.e.
those for which LðfÞ ¼ Ndata 6

�������������
2 Ndata

p
]. Taking into account

mRðfÞ ¼ ¹a log ½PrðfÞÿ þ c00 in equation (14) yields a natural
procedure by which to choose between those solutions. At the
very least, there are some objective properties of the distribution
f̂ ðh; hÞ which are not enforced by x2 fitting (e.g. positivity) and
which could be accounted for by the fact that PrðfÞ must be zero
[i.e. RðfÞ → ∞] for physically irrelevant solutions.

Unfortunately, e.g. for noisy data, taking into account those
objective constraints alone is seldom sufficient: additional ad hoc
constraints are needed to regularize the inversion problem. To that
end, RðfÞ is generally defined as a so-called penalizing function
which increases with the discrepancy between f and those
subjective constraints.

To summarise, the solution of equation (2) is found by mini-
mizing the quantity QðfÞ ¼ LðfÞ þ m RðfÞ where LðfÞ and RðfÞ are
respectively the likelihood and regularization terms and where the
parameter m > 0 allows us to tune the level of regularization. The
introduction of the Lagrange multiplier m in equation (14) is
formally justified by the fact that QðfÞ should be minimized subject
to the constraint that LðfÞ should be equal to some value, say Ne. For
instance, with LðfÞ ¼ x2ðfÞ one would choose

Ne [ ½Ndata ¹
�������������
2 Ndata

p
;Ndata þ

�������������
2 Ndata

p
ÿ :

2.2.4 Definitions of the penalizing function

When data consist of samples of a continuous physical signal,
uncorrelated noise will contribute to the roughness of the data.
Moreover, noise amplification by an ill-conditioned inversion is
likely to produce a forest of spikes or small-scale structures in the
solution. As discussed previously, assuming that the ‘probability’
PrðfÞ increases with the smoothness of f̂ ðh; hÞ, the penalizing
function should limit the effects of noise while not affecting (i.e.
biasing) too much the range of possible shape of f̂ ðh; hÞ. To that end,
the penalizing function RðfÞ should be defined so as to measure the
roughness of f.

Many different penalizing functions can be defined to measure
the roughness of f̂ ðh; hÞ, for instance by minimizing (Wahba 1990)

RðfÞ ¼

ZZ �
= nf̂ ·= nf̂

�
dh dh ; with = ¼

�
∂f̂
∂h

;

∂f̂
∂h

�
ð19Þ

(where n > 1) will enforce the smoothness of f̂ ðh; hÞ. In the instance
of a discretized signal for equation (8), such quadratic penalizing
functions can be generalized by the use of a positive definite
operator K (Titterington, 1985):

RquadðfÞ ¼ f'·K·f ; ð20Þ

where f' stands for the transpose of f.
Strict application of the Bayesian analysis implies that the

penalizing function RðfÞ is ¹log ½PrðfÞÿ (up to an additive constant
and the factor m) which is the negative of the entropy of f. This has
led to the family of maximum entropy methods (hereafter MEM)
which are widely used to solve ill-conditioned inverse problems. In
fact MEM only differs from other regularized methods by the
particular definition of the penalizing function, which provides
positivity ab initio. A possible definition of the negentropy is
(Skilling 1989)

RMEMðfÞ ¼
X

k

�
fk log

fk
pk

¹ fk þ pk

�
; ð21Þ

where p is the a priori solution: the entropy is maximized when
f ¼ p. Although there are arguments in favour of that particular
definition, there are many other possible options (Narayan &
Nityananda 1986) that lead to similar solutions. Penalizing func-
tions in MEM all share the property that they become infinite as f
reaches zero, thus enforcing positivity. In order to enforce the
smoothness of the solution further, Horne (1985) has suggested
the use of a floating prior, defining p to be f smoothed by some
operator S:

p ¼ S·f : ð22Þ

For instance, along each dimension of f̂ ðh; hÞ, the following
monodimensional smoothing operator is applied:

pi ¼

ð1 ¹ gÞ fi þ g fiþ1 ; if i ¼ 1 ;

g fi¹1 þ ð1 ¹ 2gÞ fi þ g fiþ1 ; if 1 < i < n ;

ð1 ¹ gÞ fi þ g fi¹1 ; if i ¼ n ;

8>><>>:
with 0 # g # 1=2 (here g ¼ 1=4); here i ¼ 1; :::; n stands for the
index along the dimension considered. This operator conserves
energy, i.e.

P
p ¼

P
f .

The penalizing functions RquadðfÞ or RMEMðfÞ with a floating prior
p ¼ S·f are implemented in the simulations to enforce the smooth-
ness of the solution.

2.2.5 Adjusting the weight of the regularization

Thompson & Craig (1992) compared many different objective
methods to fix the actual value of m. Generally speaking, these
methods consist of minimizing QðfÞ given by equation (14) subject
to the constraints LðfÞ ¼ Ne where Ne is equivalent to the number of
degrees of freedom of the model. Among those methods, two
can be applied to non-quadratic penalizing functions (such as the
negentropy).

The most simple approach is to minimize QðfÞ subject to the
constraint that LðfÞ ¼ Expect½LðfÞÿ ¼ Ndata. This yields an over-
regularized solution (Gull 1989) since it is equivalent to assuming
that regularization controls no degrees of freedom.

A second method is that of Gull (1989) who demonstrated that
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the Lagrange parameter should be tuned so that QðfÞ ¼ Ndata, i.e.
Ne ¼ Ndata ¹ mRðfÞ. In other words, the sum of the number of
degrees of freedom controlled by the data and by the entropy is
equal to the number of measurements. This method is very simple to
implement but can lead to under-regularized solutions (Gull 1989;
Thompson & Craig 1992). Indeed if the subjective constraints pull f
too far from the true solution then RðfÞ takes a high value as soon as
any structure appears in f̂ ðh; hÞ. As a result, in order to meet
QðfÞ ¼ Ndata, the value of m is found to be very small by this
procedure. For instance, this occurs in MEM methods when
choosing a uniform prior p since a uniform distribution is very
far from the true distribution. Nevertheless, this kind of problem
was not encountered with a floating prior (Horne 1985). In the
algorithm described below this latter method (i.e. Gull plus Horne
methods) is implemented to obtain a sensible value for m.

Another potentially attractive way to find the value of m is the
cross-validation method (Wahba & Wendelberger 1979) since it
relies solely on the data. Let Ḟi; j be the value at ði; jÞ of the model
that fits the subset of data derived while excluding measurement
ði; jÞ (in other words, Ḟi; j predicts the value of the assumed missing
data point F̃i; j); since the fit is achieved by minimizing QðfÞ, the
total prediction error, given by

TPE ¼
X

i; j

½Ḟi; j ¹ F̃i; jÿ
2

VarðF̃i; jÞ

will depend on the sought value of m. The so-called cross-validation
method chooses the value of m that minimizes TPE. When the
number of data points is large this method becomes too
CPU-intensive. Nonetheless, Wahba (1990) and also Titterington
(1985) provide efficient means of choosing m when the model is
linear which involve constructing the so-called generalized cross-
validation estimator for the TPE.

3 N U M E R I C A L O P T I M I Z AT I O N

In the previous section it was shown that the inversion problem
reduces to the minimization of a multidimensional function
QðfÞ ¼ LðfÞ þ mRðfÞ with respect to a great number of parameters
(from a few 104 to 106) and subject to the constraints that (i) the
likelihood term keeps some target value: LðfÞ ¼ Ne, (ii) all para-
meters remain positive and (iii) special care is taken along some
physical boundaries. Unfortunately there exists no general black-
box algorithm able to perform this kind of optimization.

Let us therefore investigate in turn three techniques to carry the
minimization, of increasing efficiency and complexity: direct
methods, iterative minimization along a single direction (account-
ing for positivity at fixed regularization) and iterative minimization
with a floating regularization weight.

3.1 Linear solution

Using quadratic regularization, the problem is solved by minimiz-
ing

QquadðfÞ ¼ ðF̃ ¹ a·fÞ'·W·ðF̃ ¹ a·fÞ þ m f'·K·f ; ð23Þ

where W is the inverse of the covariance matrix of the data. The
solution fquad that minimizes Qquad is

fquad ¼ ða'·W·a þ m KÞ¹1·a'·W·F : ð24Þ

This solution, which is linear with respect to the data, is clearly not
constrained to be positive.

3.2 Non-linear optimization

Linear methods only provide raw, possibly locally negative, solu-
tions. At the very least, enforcing positivity of the solution – more
generally if the penalized function is not quadratic – requires non-
linear minimization. In that case, the minimization of QðfÞ must be
carried out by successive approximations.

At the nth step, such iterative minimization methods usually
proceed by varying the current parameters f ðnÞ along a direction
df ðnÞ so as to minimize Q; the new estimate of the parameters reads

f ðnþ1Þ ¼ f ðnÞ þ lðnÞ df ðnÞ
; ð25Þ

where the optimum step size lðnÞ is the scalar

lðnÞ ¼ argfmin
l

½Qðf ðnÞ þ l df ðnÞÞÿg : ð26Þ

The problem is therefore to choose suitable successive directions of
minimization.

3.2.1 Optimum direction of minimization

In principle, the optimum direction of minimization df could be
derived from the Taylor expansion,

Qðf þ dfÞ . QðfÞ þ
X

k

dfk
∂Q
∂fk

þ
1
2

X
k;l

d fkd fl
∂2Q

∂fk∂fl
; ð27Þ

that is minimized for the step

df ¼ ¹
ÿ
==Q

�¹1·=Q ; ð28Þ

where =Q and ==Q are respectively the gradient vector and the
Hessian matrix of QðfÞ:

=Qk ¼
∂Q
∂fk

; ==Qk;l ¼
∂2Q

∂fk∂fl
:

The whole difficulty of multidimensional minimization lies in
estimating the inverse of the Hessian matrix, which may typically
be too large to be computed and stored. A further difficulty
arises when QðfÞ is highly non-quadratic (e.g. in MEM) since the
behaviour of QðfÞ can significantly differ from that of its Taylor
expansion.

There exist a number of multidimensional minimization numer-
ical routines that avoid the direct computation of the inverse of the
Hessian matrix: e.g. steepest descent, conjugate gradient algorithm,
Powell’s method, etc. (Press et al. 1988). For the steepest descent
method, the direction of minimization is simply given by the
gradient: dfSD ¼ ¹=Q. Other more efficient multidimensional
minimization methods attempt to build information about the
Hessian while deriving a more optimal direction, i.e. a better
approximation of ¹ð==QÞ¹1·=Q. For instance, the conjugate-
gradient method builds a series of optimum conjugate directions
dfCG, each of which is a linear combination of the current gradient
and the previous direction (Press et al. 1988). Among those
improved methods and when the number of parameters is very
large, the choice of conjugate gradient is driven by efficiency both
in terms of convergence rate and memory allocation.

3.2.2 Accounting for positivity

Let us now examine the non-linear strategy leading to a minimiza-
tion of QðfÞ with the constraint that f̂ ðh; hÞ $ 0 everywhere. We will
assume that the basis of functions fêkðh; hÞg is chosen so that the
positivity constraint is equivalent to enforcing that fk $ 0; ∀ k (see
Appendix A for an example of such a basis).
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When seeking the appropriate step size given by equation (26), it
is possible to account for positivity by limiting the range of lðnÞ:

f ðnþ1Þ $ 0 ⇔ ¹ min
d f ðnÞ

k >0

f ðnÞ
k

d f ðnÞ
k

# lðnÞ # ¹ max
d f ðnÞ

k <0

f ðnÞ
k

d f ðnÞ
k

:

In practice this procedure blocks the steepest descent method long
before the right solution is found. It is in fact better to truncate
negative values after each step:

f ðnþ1Þ
k ¼ maxf0; f ðnÞ

k þ lðnÞ df ðnÞ
k g :

Also, any of these methods to enforce positivity breaks conjugate
gradient minimization because the latter assumes that the true
minimum of Qðf ðnÞ þ lðnÞ df ðnÞÞ is reached while varying lðnÞ.

Thiébaut & Conan (1995) circumvent this difficulty thanks to a
reparametrization that enforces positivity. Following their argu-
ment, Q is minimized here with respect to a new set of parameters x,
such as

fk ¼ gðxkÞ ; with g : R ° Rþ : ð29Þ

The following various reparametrizations meet these requirements:

fk ¼ expðxkÞ ⇒ g0ðxkÞ
2 ¼ f 2

k ;

fk ¼ x2n
k (n positive integer) ⇒ g0ðxkÞ

2 ~ f 2¹1=n
k :

When QðfÞ is quadratic, Qðf þ ldfÞ is a second-order polynomial
with respect to l, the minimization of which can trivially be
performed with a very limited number of matrix multiplications.
One drawback of the reparametrization is that, since gð·Þ is non-
linear, Q◦gðxÞ is necessarily non-quadratic. In that case the exact
minimization of Q◦gðx þ ldxÞ – mandatory in conjugate gradient
or Powell’s methods – requires many more matrix multiplications.
Another drawback is that the direction of investigation derived by
conjugate gradient or Powell’s methods may no longer be optimal,
requiring many more steps to obtain the overall solution. This latter
point follows from the fact that these methods collect information
about the Hessian while taking into account the previous steps,
whereas for a non-quadratic functional this information becomes
obsolete very soon since the Hessian (with respect to x) is no longer
constant (Skilling & Bryan 1984).

Consequently, instead of varying the parameters x, we propose to
derive a step df for varying f from the reparametrisation that
enforces positivity. Letting dx be the chosen direction of mini-
mization for x, the sought parameters reads gðxk þ l dxkÞ .
fk þ l dxk g0ðxkÞ. Identifying the right-hand side of this expression
with fk þ ldfk yields dfk ¼ dxk g0ðxkÞ. Using the steepest descent
direction,

dxk ¼ ¹
∂Q
∂xk

¼ ¹
∂Q
∂fk

g0ðxkÞ ;

yielding finally

dfk ¼ ¹
∂Q
∂fk

g0ðxkÞ
2 ¼ ¹

∂Q
∂fk

f n
k ; ð30Þ

with 1 # n # 2 depending on the particular choice of gð·Þ.

3.2.3 Algorithm for one-dimensional minimization: positivity at
fixed m

In Appendix B we show that other authors have derived a very
similar optimum direction of minimization but in the more restric-
tive case of a regularization by RMEM. Note that our approach is not
limited to this type of penalizing function since positivity is
enforced extrinsically. In short, the minimization step is derived

from the unifying expression:
dfk ¼ ¹qk=Qk ; ð31Þ

where the gradient is scaled by (see Appendix B)

qk ¼

f n
k ; this work ðwith 1 # n # 2Þ ;

fk ; Richardson–Lucy ;

fk=m ; classical MEM ;

fk

m þ fk
P
i; j

a2
i; j;k

Var ðF̃i; jÞ

; Cornwell–Evans.

8>>>>>>>>><>>>>>>>>>:
The scheme of the one-dimensional optimization algorithm is

illustrated in Fig. 1. Iterations are stopped when the decrement in
QðfÞ becomes negligible, i.e. when

Qðf þ ldfÞ ¹ QðfÞj j # e QðfÞj j ;

where e > 0 is a small number which should not be smaller than the
square root of the machine precision (Press et al. 1988). Lucy
(1994) has suggested another stop criterion based on the value of the
ratio

r ¼ dfj jj j = ð dfL

�� ���� ��þ dfR

�� ���� ��Þ ;
where dfL and dfR are the directions that minimize the likelihood
and the regularization terms

dfL ¼ ¹q × =L and dfR ¼ ¹mq × =R ;

where × denotes the element-wise product [in other words q stands
loosely for Diagðq1; . . . ; qnÞ]. In practice and regardless of the
particular choice for q, the algorithm makes no significant progress
when r becomes smaller than 10¹5.

3.2.4 Performance issues

During the tests, it was found that the conjugate gradient method
with reparametrization and the iterative method with direction
given by equation (31) require roughly the same number of steps
(one step involving minimization along a new direction of mini-
mization). However, the non-linear reparametrization required to
enforce positivity in the conjugate gradient method prevents inter-
polation and means that the method in effect spends much more
time (a factor of 10 to 20) performing line minimization. Also,
when the current estimate is far from the solution, the minimization
direction following our prescription (30) (or that of classical MEM
or Lucy) requires fewer steps than that of Cornwell & Evans to bring
f near the true solution. When the current estimate is sufficiently
close to the solution, Cornwell & Evans’ method requires half as
many steps as the other methods to reach the solution. The best
compromise is to start with dfk ~ ¹fk=Qk, then after some iterations
use df ¼ dfCE. As a rule of thumb, for low signal-to-noise ratios
(SNR , 5) about as many steps as the number of parameters are
required, while for high signal-to-noise ratios (SNR $ 30) fewer
steps are needed (up to 10 times less). The fact remains that with
these methods trial and error iterations are required to find the
appropriate value for m. The different implementations are
illustrated and compared in Figs 2 and 3, as described in Section 4.

Accounting for positivity in multidimensional optimization
therefore leads to a modified steepest descent algorithm for which
the current gradient is locally rescaled. A faster convergence is
achieved when some information from the Hessian is extracted
appropriately. However, the above-described algorithm assumes
that optimization is performed with a fixed value of the Lagrange
parameter m. Let us now turn to a more general minimization along
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several directions which allows m to be adjusted ‘on the fly’ during
the minimization.

3.3 Minimization along several directions

3.3.1 Skilling & Bryan method revisited

In the context of maximum entropy image restoration, Skilling &
Bryan (1984) (hereinafter SB) have proposed a powerful method
which is both efficient in optimizing a non-linear problem with a

great number of parameters and able to vary automatically the
weight of regularization so that the sought solution satisfies
LðfÞ ¼ Ne. Here their approach is further generalized to any
penalizing function. In short, SB derive their method from the
following remarks.

(i) To account for positivity, they suggest an appropriate
‘metric’ (or rescaling) which is equivalent to multiplying each
minimization direction by q ¼ f.

(ii) The regularization weight m is adjusted at each iteration to
meet the constraint LðfÞ ¼ Ne. Therefore, instead of minimizing
along the single direction ¹q × ð=L þ m=RÞ, at least two directions
are considered: ¹q × =L and ¹q × =R.

(iii) As the Hessian is not constant, for instance because m is
allowed to vary, no information is carried from the previous
iterations. This clearly excludes conjugate gradient or similar
optimization methods, but favours non-quadratic penalizing func-
tions for which the Hessian is not assumed to be constant.

(iv) If the whole Hessian cannot be computed, it can nevertheless
be applied to any vector e of the same size as f in a finite number of
operations, e.g. two matrix multiplications for the likelihood term:
==L·e ¼ 2 a'·ða·eÞ (where, for the sake of simplicity, the diagonal
weighting matrix was omitted here). This illustrates how this
method provides a means to include some knowledge from the
local Hessian while seeking the optimum minimization direction.

3.3.2 Local minimization subspace

In order to adjust the regularization weight, at least two simul-
taneous directions of minimization should be used: ¹q × =L and
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Figure 1. Synopsis of the single-direction minimization algorithm. Here
e1 . 10¹8 and e2 . 10¹5.
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Figure 2. Fit of Ff (as described in Section 4) with various penalizing functions. From top left to bottom right: (1) original Ff and Ff restored by (2) MEM with
uniform prior, (3) MEM with floating smooth prior and (4) quadratic regularization, i.e. Rquad with n ¼ 1 as defined in equation (19). As expected, no significant
difference is to be found in the fits, though in panel (2), Ff is slightly rougher. The SNR is 50.



¹q × =R. Furthermore, the local Hessian provides other directions
of minimization to increase the convergence rate. Using matrix
notation, the Taylor expansion of QðfÞ for two simultaneous direc-
tions df1 and df2 reads

Qðf þ df1 þ df2Þ . QðfÞ þ df'
1 ·=Q þ

1
2

df'
1 ·==Q·df1

þ df'
2 ·½=Q þ ==Q·df1ÿ þ

1
2
df'

2 ·==Q·df2 ;

where the Hessian and gradient are evaluated at f. Given a first
direction df1, the optimal choice for a second direction is

df2;opt ¼ ¹ð==QÞ¹1·ð=Q þ ==Q·df1Þ :

In MEM, recall that positivity is enforced explicitly by the regular-
ization penalty function while efficient minimization methods rely
on the approximation of ð==QÞ¹1 by a scaling vector q. The
optimum first two directions then become in MEM

df1;opt . ¹q × =Q ; and df2;opt . ¹q × ð=Q þ ==Q·df1Þ :

Since the first term on the right-hand side of the expression for
df2;opt is df1;opt, the two near optimum directions sought are, finally,

df1 ¼ ¹q × =Q ; and df2 ¼ ¹q × ð==Q·df1Þ : ð32Þ

Similar considerations yield further possible directions:

dfn ¼ ¹q × ð==Q·dfn¹1Þ : ð33Þ

If the rescaling, q, provides too good an approximation of the
inverse of the Hessian, then df1 and df2 will be almost identical (i.e.
antiparallel); hence using only one is sufficient. In other words,
since the local Hessian is accounted for by the use of additional

directions of minimization, there is no need for DiagðqÞ to be an
accurate approximation of ð==QÞ¹1. The crude rescaling given by
equation (B1) is therefore sufficient, i.e. taking q ¼ f. This defini-
tion of q has the further advantage of warranting positive values of f
and does not depend on the actual value of m (which is obviously not
the case for the Hessian).

If no term in QðfÞ enforced positivity, it was shown earlier that the
reparametrization (29) would. From the Taylor expansion of QðxÞ,
the first two steepest descent directions with respect to the para-
meters x are given by

dx1;k ¼ ¹
∂Q
∂xk

¼¹g0ðxkÞ=Qk ;

dx2;k ¼ ¹
X

l

∂2Q
∂xk∂xl

∂Q
∂xl

¼¹g0ðxkÞ
X

l

==Qk;lg
0ðxlÞdx1;l :

ð34Þ

Since dfk . g0ðxkÞdxk, the two optimum directions of minimization
for the parameters f are

df1;k ¼ ¹g0ðxkÞ
2=Qk ; ð35Þ

df2;k ¼ ¹g0ðxkÞ
2
X

l

==Qk;ldf1;l ; ð36Þ

which are incidentally identical to those given by equation (32),
provided that qk ¼ g0ðxkÞ

2.
For all the regularization penalizing functions considered here,

clearly the best choice is to use directions given by the Hessian
applied to equation (34) when other directions of minimization than
those related to the gradient are considered. Since m can vary, the
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Figure 3. Restoration of f̂ ðh; hÞ from Fig. 2. From top left to bottom right: (1) true distribution and distributions restored by (2) MEM with uniform prior, (3)
MEM with smooth floating prior and (4) quadratic regularization, i.e. Rquad with n ¼ 1 as defined in equation (19). Note that MEM with a uniform prior yields a
rather unsmooth solution, which is expected since no penalty is imposed by this method for lack of smoothness.



Hessians of L and R have to be applied separately. At each step,
the minimization is therefore performed in the n ¼ 3 × 2 ¼ 6
dimensional subspace defined by

df1 ¼ ¹q × =L ; df2 ¼ ¹q × =R ;

df3 ¼ ¹q × ð==L·df1Þ ; df4 ¼ ¹q × ð==L·df2Þ ;

df5 ¼ ¹q × ð==R·df1Þ ; df6 ¼ ¹q × ð==R·df2Þ ;

ð37Þ

where

qk ¼ f n
k with 1 # n # 2 : ð38Þ

When n ¼ 1, q is the same metric as that introduced by SB while
relying on other arguments. Depending on the actual expression for
==R (and in particular in MEM with a constant prior), a smaller
number of directions need be explored (for instance, SB used only
n ¼ 3 simultaneous directions, because when q ¼ f, ==R ¼ 1=f so
df5 ¼ df1, df6 ¼ df2; they also use a linear combination of df3 and
df4). In this n-dimensional subspace, a simple second-order Taylor
expansion of Qðf þ

Pn
i¼1 lidfiÞ shows that the optimum set of

weights sought, fl1; :::;lng, is given by the solution of the n
linear equations parametrized by m and given byXn

j¼1

ljdf'
j·ð==L þ m==RÞ·dfi ¼ ¹df'

i·ð=L þ m=RÞ : ð39Þ

Now, in that subspace the optimization may be ill-conditioned (i.e.
the set of linear equations is linearly dependent in a numerical
sense). In order to deal with this degeneracy, truncated SVD
decomposition (Press et al. 1988) is used to find a set of numerically
independent directions. In practice, the rank of the six linear
equations varies from 2 (very far from the solution or when
convergence is almost reached) to typically 5 or 6. This method
turns out to be much easier to implement than the bidiagonalization
suggested by SB.

3.3.3 ‘On the fly’ derivation of the regularization weight

At each iteration a strategy similar to that of SB was adopted here to
update the value of m.

(i) Lmin and Lmax are the values of the likelihood term in
the subspace in the limits m → 0 and m → ∞ respectively. The
corresponding solutions give what we call the maximum like-
lihood solution and the maximum regularized solution in the
subspace.

(ii) If Lmax < Ne the maximum regularized solution correspond-
ing to Lmax is adopted to proceed to the next iteration. Otherwise, in
order to avoid relaxing the regularization and following SB, a
modest reachable goal is fixed:

Laim ¼ maxfNe; ð1 ¹ aÞLprev þ aLming;

where Lprev is the likelihood value at the end of the previous
iteration, while 0<a<1 (say a ¼ 2=3). A simple bisection
method is applied to seek the value of m for which the solution of
equation (39) yields L ¼ Laim.

Following this scheme, the algorithm varies the value of m so that at
each iteration the likelihood is reduced until it reaches its target
value; then the regularization term is minimized while the like-
lihood remains constant.

As a stop criterion, a measure of the statistical discrepancy
between two successive iterations,X

k

f ðnÞ
k f ðnþ1Þ

k ¹ f ðnÞ
k

�� �� . X
k

f ðnÞ
k ;

is computed. In practice, in order to avoid over-regularization, Ne is
taken to be Ndata ¹

������������
2Ndata

p
. The corresponding scheme of the n-

dimensional optimization algorithm is illustrated in Fig. 4.
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Figure 4. Synopsis of the multiple-direction multidimensional minimization algorithm with adjustment of the regularization weight. In this algorithm, fmin > 0 is
a small threshold used to avoid negative values, 0 # e p 1 is a small value used to check convergence.



3.3.4 Performance and assessments

The optimization of QðfÞ in a multidimensional subspace yields
many practical advantages.

(i) It provides faster convergence rates (about 10 times fewer
overall iterations and even many fewer when accounting for the
number of inversions required to derive the regularization weight)
and less overall CPU time in spite of the numerous matrix multi-
plications involved in computing the n directions of minimization
and their images by the Hessians.

(ii) It yields a more robust algorithm because it is less sensitive to
local minima and also because the routine requires less tuning.

(iii) Since m varies between iterations and since the local Hessian
is always re-estimated, the solution can be modified ‘on the fly’, e.g.
rescaled, without perturbing the convergence. Hence the normal-
ization is no longer an issue.

This algorithm presents the following set of improvements over
that of Skilling & Bryan:

(i) A more general penalizing function than entropy is consid-
ered (e.g. entropy with floating prior or quadratic penalizing
function) which yields a different metric, derived heuristically.
This yields almost the same optimization subspace but from a
different approach.

(ii) Truncated SVD is implemented to avoid ill-conditioned
problems in this minimization subspace.

4 S I M U L AT I O N S

4.1 Specifics of stellar disc inversion

4.1.1 Models of azimuthal velocity distributions

Simulated azimuthal velocity distributions can be constructed via
the prescription described in Pichon & Lynden-Bell (1996). The
construction of Gaussian line profiles compatible with a given
temperature requires specifying the mean azimuthal velocity of
the flow, vf


 �
, on which the Gaussian should be centred, the surface

density SðRÞ and the azimuthal velocity dispersion jf. The line
profile F then reads

FfðR; vfÞ ¼
SðRÞ������
2p

p
jf

exp ¹
vf ¹ vf


 �� �2
2j2

f

 !
: ð40Þ

Here the azimuthal velocity dispersion is related to the azimuthal
pressure, pf, by

j2
f ¼ pf=S ¹ vf


 �2
: ð41Þ

The azimuthal pressure pf follows from the equation of radial
support,

v2
f


 �
¹ R

∂w

∂R
¼

∂ RSj2
R

ÿ �
S ∂R

; ð42Þ

and the kinematical ‘temperature’ of the disc with a given Toomre
number Q (Toomre 1964),

Q ¼ 0:298 jRk =S : ð43Þ

The expression of the average azimuthal velocity, hvfi, may be
taken to be that which leads to no asymmetric drift equation:

S vf


 �2
¼ pf ¹ pRðk R = 2vcÞ

2
; ð44Þ

where k is the epicyclic frequency and vc the velocity of circular
orbits. Equations (40)–(44) provide a prescription for the Gaussian
azimuthal line profile Ff. These azimuthal velocity distributions are

used throughout to generate simulated data corresponding to the
iso-Q Kuzmin disc.

4.1.2 The counter-rotating radial orbits

As shown in Fig. 2, the azimuthal distributions of our models have
Gaussian tails corresponding to stars on almost radial orbits with
small negative azimuthal velocity. These few stars play a strong
dynamical role in stabilizing the disc, and as such should not be
overlooked since they significantly increase the azimuthal disper-
sion of inner orbits, effectively holding the inner galaxy against its
self-gravity. Now this Gaussian tail translates in the momentum –
reduced energy space as a small group of counter-rotating orbits
introducing a cusp in the number of stars near h ¼ 0 (this cusp is
only apparent because the distribution is clearly continuous and
differentiable across this line). In practice the regularization con-
straint across h ¼ 0 is relaxed, in effect treating the two regions
independently.

4.2 Validation and efficiency

4.2.1 Quality estimation

Clearly the quality level for the reconstructed distribution will
depend upon the application in mind. For stability analysis, the
relevant information involves, for instance, the gradient of the
distribution function in action space. An acute quality estimator
would therefore involve such gradients, although their computation
requires some knowledge of the orbital structure of the disc, and is
beyond the scope of this paper. Here the quality of the reconstruc-
tion is estimated while computing the mean distribution-weighted
residual between the distribution sought and the model recovered. It
is defined by

errorðfÞ¼ j f ¹ ftruej

 �

.
P

i ftrue;i j fi ¹ ftrue;ijP
i ftrue;i

; ð45Þ

and measures the restored distribution error with respect to the true
distribution f̂trueðh; hÞ averaged over the stars (i.e. weighted by the
distribution f̂true). A set of simulations displaying this estimate for
the quality of the reconstruction was carried while varying respec-
tively the outer sampled edge of the disc, the signal-to-noise ratio,
the sampling in the modelled distribution and the Q number of the
underlying data set, and is described below.

4.2.2 Validation: zero noise level inversion

An inversion without any noise is first carried out in order to assess
the accuracy of our inversion routine. This turned out to be more
difficult than performing the inversion with some knowledge of the
noise level since in this instance there is no simple assessment of a
good value for the Lagrange multiplier m. All the ill-conditioning
arises because of round-off errors alone. The original distribution
was eventually recovered in this manner with a mean distribution-
weighted residual, errorðfÞ, smaller than one part in 104. From now
on, the distribution f̂ ðh; hÞ derived from this noise-free inversion is
taken in our simulations as the ‘true’ underlying distribution.

4.2.3 Choice of the penalizing function

Let us now investigate the penalizing functions corresponding to
three methods of regularization, namely MEM with uniform prior
(as advocated by SB), MEM with smooth floating prior (given by
equations 21 and 22) and quadratic regularization (equation 20).
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The corresponding modelled and recovered distribution functions
are given in Figs 2 and 3. From these figures it is apparent that MEM
with uniform prior is unsuitable in this context (this failure is
expected, because here – in contrast to image reconstruction – no
cut-off frequency forbids the roughness of the solution), while
MEM with floating prior or quadratric penalizing function enforces
smoothness, provides similar results and yields a satisfactory level
of regularization. In particular, no qualitative difference occurs
owing to the penalizing function alone, which is a good indication
that the inversion is carried out adequately. Note that the apparent
cusp at h ¼ 0 is well accounted for by the inversion.

Regularization by negentropy with a floating smooth prior was
used in the following simulations.

4.2.4 Efficiency: the influence of the noise level

In the second part of the simulations, the performance of the
proposed algorithm with respect to noise level is investigated.
The noise is assumed to obey a normal distribution with standard
deviation given by

ji; j ¼
Fi; j

SNR
þ maxðFÞ jbg : ð46Þ

In other words, the intrinsic data noise has a constant signal-to-
noise ratio, SNR, and the detector adds a uniform readout noise.
Three sets of runs corresponding respectively to a constant signal-
to-noise ratio of SNR ¼ 5, 30, and 100 are presented in Figs 5
(mean recovered f), 6 (sample f) and 7 (standard deviation). In all
cases, the readout noise level is jbg ¼ 10¹4. The figures only

display the inner part of the distribution while the simulation carries
the inversion for h in the range ½¹2; 3½ and all possible energies.

The main conclusion to be drawn from these figures is that the
main features – both qualitatively and quantitatively given the noise
level – of the distribution are clearly recovered by this inversion
procedure. Note that near the peak of the distribution at h ¼ 0,
h ¼ 0, the recovered distribution is nonetheless slightly rounder
than its original counterpart for the noisier (SNR ¼ 5, panel 2)
simulation. This is a residual bias of the reparametrization: the
sought distribution is effectively undersampled in that region and
the regularization truncates the residual high frequency in the signal
while incorrectly assuming that it corresponds to noise. If the
sampling had been tighter in that region, say using regular sampling
in expð¹hÞ, the regularization would not have truncated the restored
distribution. Alternatively, in order to retain algebraic kernels,
uneven logarithmic sampling in the spline basis is an option.

This point illustrates the danger of non-parametric inversions,
which clearly provide the best approach to model fitting but leave
open some level of model-dependent tuning and consequently can
give rise to potential flaws when the wrong assumptions are made
about the nature of the sought solution for low signal-to-noise ratio.
For instance, the above-described procedure would inherently
ignore any central cusp in the disc if the sampling in parameter
space were too sparse in that region, even if the SNR level is
adequate to resolve the cusp. Since in practice systematic over-
sampling is computationally onerous, given the dimensionality of
the problem, special care should be taken in deciding what an
adequate sampling and parametrization involves.
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Figure 5. From top left to bottom right, (1) true distribution (approximately that of a disc with Toomre parameter Q ¼ 1:25) and mean restoration of f̂ ðh; hÞ out of
40 iterations for a SNR of (2) 5, (3) 30 and (4) 100. Abscissa is normalized specific energy h and ordinate is specific angular momentum h. Note that the
isocontours are not sampled uniformly in order to display counterrotating stars more acurately.



Finally, Fig. 8 gives the evolution of the fit error signal-to-noise
ratio for various Toomre parameters Q. This figure illustrates that
the method is independent of the model disc, whether dynamically
cold or hot.

4.2.5 Efficiency: sampling in the model

The best sampling of the phase space of f must be derived
considering that two opposite criteria should be balanced: (i)
using too few basis functions would bias the solution, (ii) using
more basis functions consumes more CPU time. A simple and
intuitive way to check that the sampling rate is sufficient is to ensure
that the minimum likelihood reached without regularization is
much smaller than the target likelihood, i.e. limm→0 LðfÞ p Ne.
Unregularized inversions of noisy data with an increasing number
of basis functions and signal-to-noise ratios was therefore per-
formed. In practice, since completely omitting the regularization
leads to a difficult minimization problem because of the large
number of local minima, regularization was instead relaxed by
using a target likelihood somewhat lower than the number of
measurements (Ne . 0:1 × Ndata). The results of these simulations
are displayed in Fig. 9. It appears that ,150 × 150 basis functions
are sufficient to avoid the sampling bias. In all the other simulations,
150 × 150 or 200 × 200 basis functions are used.

4.2.6 Efficiency: truncation in the measurements

The inversion algorithm presented here makes no assumption about
completeness of the input data set. Therefore, the recovered solu-
tion f can in principle be used to predict missing values in Ff, in

contrast to direct inversion methods which assume that Ff is known
everywhere. Real data will always be truncated at some maximum
radius R # Rmax. There may also be missing measurements; caused
for instance by dust clouds which hide some parts of the disc, or
departure from axial symmetry corresponding to spiral structure. In
order to check how extrapolation proceeds, various truncated data
sets were simulated and the inversion was carried out. Fig. 10 shows
the departure of the recovered distributions from the true one as a
function of the outer radius Rmax up to which data is measured. This
figure also shows that our inversion allows some extrapolation,
because, for all signal-to-noise ratios considered, the error reaches
its minimum value as soon as Rmax $ 7 (i.e. 4 half-mass radii, Re,
compared with the true disc radius which was 10 half-mass radii in
our simulations). Note that interpolation is likely to be more reliable
than extrapolation; our method should therefore be much less
sensitive to data ‘holes’.

5 D I S C U S S I O N A N D C O N C L U S I O N

This paper presented a series of practical algorithms to obtain the
distribution function f from the measured distributions FfðR; vfÞ,
compared these algorithms with existing algorithms and described
in detail the best-suited algorithms to carry out efficient inver-
sion of such ill-conditioned problems. It was argued that non-
parametric modelling is best suited to describing the underlying
distribution functions when no particular physical model is to be
favoured. For these inversions, regularization is a crucial issue
and its weight should be tuned ‘on the fly’ according to the noise
level.

The mimimization algorithms described in Section 3 are fairly
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Figure 6. True distribution and one sample for each SNR out of the 40 restorations carried out, displayed as in Fig. 5. Abscissa is normalized specific energy h and
ordinate is specific angular momentum h. Comparison with Fig. 5 shows that the inversion is successful both statistically and on a per sample basis.



general and could clearly be implemented for minimization prob-
lems corresponding to other geometries, such as that corresponding
to the recovery of distributions for spheroid or elliptical galaxies
explored by other authors (e.g. Merritt & Tremblay 1993). More
generally, they could be applied to any linear inversion problem
where positivity is an issue; this includes image reconstruction, all
Abel deprojection arising in astronomy, etc. Applying this algorithm
to simulated noisy data, it was found that the criteria of positivity
and smoothness alone are sufficiently selective to regularize the
inversion problem up to very low signal-to-noise ratios (SNR , 5)
as soon as data is available up to 4Re. The inversion method
described here is directly applicable to published measurements.

Here the inversion assumed that the H i rotation curve gives
access to an analytic (or spline) form for the potential. A more
general procedure should provide a simultaneous recovery of the
potential, although such a routine would be very CPU-intensive
since changing the potential requires us to recompute the matrix a.
Nevertheless, it would be straightforward to extend the scope of this
method to configurations corresponding to an arbitrary slit angle,
such as those sketched in Appendix C, or to data produced by
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Figure 8. Fit error versus SNR for various Toomre parameters Q. The fit
error approximatively decreases as: error . 1:0 × 10¹3 þ 3:4 × 10¹2

=SNR
(solid curve).

Figure 9. Minimum value of the normalized likelihood term x2
=Ndata that

can be reached as the number of basis functions varies and for different
signal-to-noise ratios. The abscissa is the number of samples along h and h,
which is the square root of the number of basis functions used. The number
of data measurements was 50 × 50 and the maximum disc radius was
Rmax ¼ 7. The curves are only here to clarify the figure: the simulation
results are plotted as symbols.
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integral field spectroscopy [such as TIGRE or OASIS (Bacon et al
1995)], where the redundancy in azimuth would lead to higher
signal-to-noise ratios if the disc were still assumed to be flat and
axisymmetric.

Once the distribution function has been characterized, it is
possible to study quantitatively all departures from the flat
axisymmetric stellar models. Indeed, axisymmetric distribution
functions are the building blocks of all sophisticated stability
analyses, and a good phase-space portrait of the unperturbed
configuration is clearly needed in order to asses the stability of a
given equilibrium state. Numerical N-body simulations require
sets of initial conditions which should reflect the nature of the
equilibrium. Linear stability analysis also relies on a detailed
knowledge of the underlying distribution (Pichon & Cannon
1997).
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A P P E N D I X A : B I L I N E A R I N T E R P O L AT I O N

In this non-parametric approach, the distribution f̂ ðh; hÞ is described
by its projection on to a basis of functions. If we choose a basis for
which the two variables h and h are separable then equation (8)
becomes

f̂ ðh; hÞ ¼
X

k

X
l

fk;l ukðhÞ vlðhÞ ; ðA1Þ

where ukðhÞ and vlðhÞ are the new basis functions. This description
of f̂ ðh; hÞ yields

F̃fðRi; vf jÞ ¼ F̃i; j ¼
X

k

X
l

ai; j;k;l fk;l ; ðA2Þ

where ai; j;k;l are coefficients which only depend on Ri, vfj and wi
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Figure 10. Evolution of the fit error as the data set is truncated in radius for different signal-to-noise ratios (in the simulations the disc outer edge was assumed to
be 10). The curves are only here to guide the eye: the results of simulation are plotted as symbols.



[wðRÞ in fact]:

ai; j;k;l ¼ vlðRi vf jÞ
������������������
¹2«min i; j

p �1

hc i; j

ukðhÞ�����������������
h ¹ hc i; j

p dh : ðA3Þ

Bilinear interpolation is implemented in the simulations described
in Section 4 to evaluate f̂ ðh; hÞ everywhere. In this case, the weights
fk;l are the values of the distribution at the sampling positions
fðhk ; hlÞ; k ¼ 1; . . . ;K; l ¼ 1; . . . ; Lg,

fk;l ¼ f̂ ðhk; hlÞ ;

and the basis functions are linear splines,

ukðhÞ ¼
1 ¹ h¹hk

Dh

��� ��� if hk¹1 # h # hkþ1;

0 otherwise,

8<:
vlðhÞ ¼

1 ¹ h¹hl
Dh

�� �� if hl¹1 # h # hlþ1;

0 otherwise,

8<:
with hkþn ¼ hk þ n Dh and hlþn ¼ hl þ n Dh. The bilinear
interpolation is a particular case of the general non-parametric
description. It yields a very sparse matrix a which can significantly
speed up matrix multiplications. The coefficients ai; j;k;l can be
computed analytically, although since the basis functions are
defined piecewise, the integration can be performed piecewise:

�1

hc

ukðhÞ�������������
h ¹ hc

p dh ¼

a00
k for k ¼ 1;

a0
k þ a00

k for k ¼ 2; . . . ;K ¹ 1;

a0
k for k ¼ K;

8>><>>:
with:

a0
k ¼

�minfhk ;1g

maxfhk¹1 ;hcg

ukðhÞ�������������
h ¹ hc

p dh

¼

( 0 if hk # hc;

2
��������
h¹hc

p
3Dh

ðh¹3hk¹1þ2hcÞ

� �h¼minfhk ;1g

h¼maxfhk¹1 ;hcg

otherwise;

and

a00
k ¼

�minfhkþ1 ;1g

maxfhk ;hcg

ukðhÞ�������������
h ¹ hc

p dh

¼

( 0 if hkþ1 #hc;

2
��������
h¹hc

p
3Dh

ð3hkþ1¹h¹2hcÞ

� �h¼minfhkþ1 ;1g

h¼maxfhk ;hcg

otherwise.

Another useful feature of bilinear interpolation is that the positivity
constraint is straightforward to implement:

f̂ ðh; hÞ ¼
X

k;l

fk;lukðhÞvlðhÞ $ 0; ∀ ðh; hÞ ⇔ fk;l $ 0; ∀ ðk; lÞ :

There is no such simple relation for higher order splines.

A P P E N D I X B : S P E C I F I C M I N I M I Z AT I O N
M E T H O D S F O R M E M

Several non-linear methods have been derived specifically to seek
the maximum entropy solution. Let us review those briefly so as to
compare them with our method (Section 3.2.2). In MEM, assuming
that (i) the prior p does not depend on the parameters and (ii) the
Hessian of the likelihood term can be neglected, the Hessian of Q is
then purely diagonal:

==Qk;l . m ==Rk;l ¼
mdk;l

fk
:

The direction of minimization is therefore

dfMEMk ¼ ¹
fk
m

=Qk : ðB1Þ

Skilling & Bryan (1984) discussed further refinements to speed up
convergence. Cornwell & Evans (1984) approximated the Hessian
==Q by neglecting all non-diagonal elements:

==Qk;l . dk;l
m

fk
þ dk;l

X
i; j

a2
i; j;k

VarðF̃i; jÞ
;

which yields

dfCEk ¼ ¹
fk =Qk

m þ fk
P

i; j a2
i; j;k=VarðF̃i; jÞ

: ðB2Þ

In fact, dfCEk is equivalent to the steepest descent step in the
preferred Levenberg–Marquart method (Press et al. 1988), which
is the method to fit a parametric non-linear model. Extending the
Richardson–Lucy method to the maximum penalized likelihood
regime, Lucy (1994) suggests

dfLucyk ¼ ¹fk =Qk ¹

P
l fl=QlP

l fl

� �
; ðB3Þ

which is almost the same as in classical MEM but for the termP
l fl=Ql=

P
l fl which accounts for the constraint that

P
k fk should

remain constant. Note that it is sufficient to replace =Qk in
equation (31) by =Qk ¹

P
l ql=Ql=

P
l ql to apply a further con-

straint of normalization.
With all these non-linear methods, it may also be advantageous to

seek the step size that minimizes Qðf þ ldfÞ (Cornwell & Evans
1984; Lucy 1994).

A P P E N D I X C : G E N E R A L M O D E L W I T H
A R B I T R A RY S L I T O R I E N TAT I O N

Long-slit spectroscopic observations of a galactic disc provide the
distribution

FaðR; v
==

Þ ¼

�
f ð«; hÞ dv' ; ðC1Þ

where v
==

and v' are the star velocities (at intrinsic radius r and
projected radius R) along and perpendicular to the line of sight
respectively, which are related to the radial and azimuthal velocities
by

vR ¼ c1 v
==

þ c2 v' ; vf ¼ c3 v
==

þ c4 v' and R ¼ c5 r :

Here the ck depend on the angle a between the slit and the major
axis of the disc as measured in the plane of the sky and on the
inclination i of the disc axis with respect to the line of sight (see
Fig. C1). The case where the slit is parallel to the major axis of the
disc, i.e. a ¼ 0, has been examined in the main text. When a Þ 0,
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the specific angular momentum h ¼ r vf can be used as the variable
of integration:

FaðR; v
==

Þ ¼
c5

R c4

�hmax

¹hmax

f ð«; hÞ dh; ðC2Þ

where the specific energy and the integration bounds are

« ¼
1
2

v2
==

þ
1
2

h c5

R c4
¹

c3

c4
v
==

� �2

¹w
R
c5

� �
;

hmax ¼
R
c5

c3

c4
v
==

þ

���������������������������
2w

R
c5

� �
¹ v2

==

s !
:

In practice, straightforward trigonometry yields

c1 ¼ sinðbÞ= sinðiÞ ; c2 ¼ cosðbÞ ;

c3 ¼ cosðbÞ= sinðiÞ ; c4 ¼ sinðbÞ ;

c5 ¼
�����������������������������������������������
cos2ðbÞ þ sin2ðbÞ sin2ðiÞ

p
;

where b is the angle of the slit as measured in the plane of the disc,
which obeys

tanðbÞ ¼ tanðaÞ= sinðiÞ :
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