74 research outputs found

    SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale

    Get PDF
    A new biophysical model SURFATM-NH3, simulating the ammonia (NH<sub>3</sub>) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models

    First Early Hominin from Central Africa (Ishango, Democratic Republic of Congo)

    Get PDF
    Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma), and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine) branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25) from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used µCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ) surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma

    Cercle berrichon d'Information Géographique

    No full text
    Personne E., Wolkowitsch H. Cercle berrichon d'Information Géographique . In: L'information géographique, volume 14, n°2, 1950. p. 76

    Cercle berrichon d'Information Géographique

    No full text
    Personne E., Wolkowitsch H. Cercle berrichon d'Information Géographique . In: L'information géographique, volume 14, n°2, 1950. p. 76

    Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Get PDF
    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations

    Eine Gehaltsbestimmung des käuflichen Jodkaliums

    No full text

    Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an agricultural field with winter wheat and maize crops

    No full text
    This study evaluates ozone (O-3) deposition to an agricultural field over a period of 2years. A two-layer soil-vegetation-atmosphere-transfer (Surfatm-O-3) model is used to partition the O-3 flux between the soil, the cuticular, and the stomatal pathways. The comparison between measured and modeled O-3 fluxes exhibited a good agreement, independently of the canopy structure and coverage and the climatic conditions, which implicitly validates the O-3 flux partitioning. The total, soil, cuticular, and stomatal O-3 budgets are then established from the modeling. Total ecosystem O-3 deposition over the 2year period was 87.5kgha(-1). Clearly, nonstomatal deposition dominates the deposition budget, especially the soil component which represented up to 50% of the total deposition. Nevertheless, the physiological and phenological differences of maize and winter wheat induced large difference in the stomatal deposition budgets of these two crops. Then, the effect of simplified parameterizations for soil and cuticular resistances currently used in other models on the O-3 budget is tested. Independently, these simplified parameterizations cause an underestimation of the O-3 deposition ranging between 0% and 11.2%. However, the combination of all simplifications resulted in an underestimation of the total O-3 deposition by about 20%. Finally, crop yield loss was estimated to be 1.5-4.2% for the winter wheat, whereas maize was not affected by O-3

    Investigating Sources of Measured Forest-atmosphere Ammonia Fluxes Using Two-layer Bi-directional Modelling

    Get PDF
    Understanding and predicting the ammonia (NH3) exchange between the biosphere and the atmosphere is important due to the environmental consequences of the presence of reactive nitrogen (Nr) in the environment. The dynamics of the natural sources are, however, not well understood, especially not for forest ecosystems due to the complex nature of this soil-vegetation-atmosphere system. Furthermore, the high reactivity of NH3 makes it technically complex and expensive to measure and understand the forest-atmospheric NH3 exchange. The aim of this study is to investigate the NH3 flux partitioning between the ground layer, cuticle and stomata compartments for two temperate deciduous forest ecosystems located in Midwestern, USA (MMSF) and in Denmark (DK-Sor). This study is based on measurements and simulations of the surface energy balance, fluxes of CO2 and NH3 during two contrasted periods of the forest ecosystems, a period with full developed canopy (MMSF) and a senescent period for the DK-Sor site, with leaf fall and leaf litter build-up. Both datasets indicate emissions of NH3 from the forest to the atmosphere. The two-layer NH3 compensation point model SURFATM-NH3 was used in combination with a coupled photosynthesis-stomatal conductance model to represent seasonal variation in canopy physiological activity for simulating both net ecosystem CO2 exchange rates (R2 = 0.77 for MMSF and R2 = 0.84 for DK-Sor) and atmospheric NH3 fluxes (R2 = 0.43 for MMSF and R2 = 0.60 for DK-Sor). A scaling of the ground layer NH3 emission potential (Гg) was successfully applied using the plant area index (PAI) to represent the build-up of a litter layer in the leaf fall period. For a closed green forest canopy (MMSF), unaffected by agricultural NH3 sources, NH3 was emitted with daytime fluxes up to 50 ng NH3-N m-2 s-1 and nighttime fluxes up to 30 ng NH3-N m-2 s-1. For a senescing forest (DK-Sor), located in an agricultural region, deposition rates of 250 ng NH3-N m-2 s-1 were measured prior to leaf fall, and emission rates up to 670 ng NH3-N m-2 s-1 were measured following leaf fall. For MMSF, simulated stomatal NH3 emissions explain the daytime flux observations well, and it is hypothesized that cuticular desorption is responsible for the observed NH3 emissions at night. During leaf fall in DK-Sor, ground fluxes dominate the NH3 flux with a mean emission rate of 150 ng NH3-N m-2 s-1. This study shows that forests potentially comprise a natural source of NH3 to the atmosphere, and that it is crucial to take into account the bi-directional exchange processes related to both the stomatal, cuticular and ground layer pathways in order to realistically simulate forest–atmosphere fluxes of NH3
    • …
    corecore