62 research outputs found
Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations
Evans syndrome (ES) is defined by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. Clinical presentation includes manifestations of immune dysregulation, found in primary immune deficiencies, autoimmune lymphoproliferative syndrome with FAS (ALPS-FAS), Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) and Lipopolysaccharide-Responsive vesicle trafficking Beige-like and Anchor protein (LRBA) defects. We report the clinical history and genetic results of 18 children with ES after excluding ALPS-FAS. Thirteen had organomegaly, five lymphocytic infiltration of non-lymphoid organs, nine hypogammaglobulinemia and fifteen anomalies in lymphocyte phenotyping. Seven patients had genetic defects: three CTLA4 mutations (c.151C>T; c.109+1092_568-512del; c.110-2A>G) identified by Sanger sequencing and four revealed by Next Generation Sequencing: LRBA (c.2450+1C>T), STAT3 gain-of-function (c.2147C>T; c.2144C>T) and KRAS (c.37G>T). No feature emerged to distinguish patients with or without genetic diagnosis. Our data on pediatric-onset ES should prompt physicians to perform extensive screening for mutations in the growing pool of genes involved in primary immune deficiencies with autoimmunity
Persistence of Environmental DNA in Freshwater Ecosystems
The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys
A 1-Year Prospective French Nationwide Study of Emergency Hospital Admissions in Children and Adults with Primary Immunodeficiency.
PURPOSE: Patients with primary immunodeficiency (PID) are at risk of serious complications. However, data on the incidence and causes of emergency hospital admissions are scarce. The primary objective of the present study was to describe emergency hospital admissions among patients with PID, with a view to identifying "at-risk" patient profiles.
METHODS: We performed a prospective observational 12-month multicenter study in France via the CEREDIH network of regional PID reference centers from November 2010 to October 2011. All patients with PIDs requiring emergency hospital admission were included.
RESULTS: A total of 200 admissions concerned 137 patients (73 adults and 64 children, 53% of whom had antibody deficiencies). Thirty admissions were reported for 16 hematopoietic stem cell transplantation recipients. When considering the 170 admissions of non-transplant patients, 149 (85%) were related to acute infections (respiratory tract infections and gastrointestinal tract infections in 72 (36%) and 34 (17%) of cases, respectively). Seventy-seven percent of the admissions occurred during winter or spring (December to May). The in-hospital mortality rate was 8.8% (12 patients); death was related to a severe infection in 11 cases (8%) and Epstein-Barr virus-induced lymphoma in 1 case. Patients with a central venous catheter (n = 19, 13.9%) were significantly more hospitalized for an infection (94.7%) than for a non-infectious reason (5.3%) (p = 0.04).
CONCLUSION: Our data showed that the annual incidence of emergency hospital admission among patients with PID is 3.4%. The leading cause of emergency hospital admission was an acute infection, and having a central venous catheter was associated with a significantly greater risk of admission for an infectious episode
Endothelial and Smooth Muscle Cells from Abdominal Aortic Aneurysm Have Increased Oxidative Stress and Telomere Attrition
Background: Abdominal aortic aneurysm (AAA) is a complex multi-factorial disease with life-threatening complications. AAA is typically asymptomatic and its rupture is associated with high mortality rate. Both environmental and genetic risk factors are involved in AAA pathogenesis. Aim of this study was to investigate telomere length (TL) and oxidative DNA damage in paired blood lymphocytes, aortic endothelial cells (EC), vascular smooth muscle cells (VSMC), and epidermal cells from patients with AAA in comparison with matched controls. Methods: TL was assessed using a modification of quantitative (Q)-FISH in combination with immunofluorescence for CD31 or α-smooth muscle actin to detect EC and VSMC, respectively. Oxidative DNA damage was investigated by immunofluorescence staining for 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG). Results and Conclusions: Telomeres were found to be significantly shortened in EC, VSMC, keratinocytes and blood lymphocytes from AAA patients compared to matched controls. 8-oxo-dG immunoreactivity, indicative of oxidative DNA damage, was detected at higher levels in all of the above cell types from AAA patients compared to matched controls. Increased DNA double strand breaks were detected in AAA patients vs controls by nuclear staining for γ-H2AX histone. There was statistically significant inverse correlation between TL and accumulation of oxidative DNA damage in blood lymphocytes from AAA patients. This study shows for the first time that EC and VSMC from AAA have shortened telomeres and oxidative DNA damage. Similar findings were obtained with circulating lymphocytes and keratinocytes, indicating the systemic nature of the disease. Potential translational implications of these findings are discussed. © 2012 Cafueri et al
Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C
Characterization of greater middle eastern genetic variation for enhanced disease gene discovery
The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics
Self-Assembled Organometallic Nickel Complexes as Catalysts for Selective Dimerization of Ethylene into 1-Butene
Sulfonamido-phosphorus and aminophosphine ligands self-assemble to readily form active and stable nickel catalysts that are highly selective for the dimerization of ethylene to 1-butene. The self-assembled allyl-nickel complexes are zwitterionic and are stabilized by hydrogen bond interactions between the two ligands. These organometallic cis-diphosphine complexes rearrange under an ethylene atmosphere to give trans-diphosphine catalysts, with one monoanionic P,O METAMORPhos ligand and an aminophosphine
- …