1,369 research outputs found

    MODISTools - downloading and processing MODIS remotely sensed data in R

    Get PDF
    Remotely sensed data – available at medium to high resolution across global spatial and temporal scales – are a valuable resource for ecologists. In particular, products from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS), providing twice-daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per-location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta-analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time-series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R2 values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub (https://github.com/seantuck12/MODISTools)

    Advanced power sources for space missions

    Get PDF
    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported

    Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    Get PDF
    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N_2O_5 (source of nitrate radical, NO_3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid–base reactions. The CCN activity of the humid TMA–N_2O_5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N_2O_5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Scattering length of the ground state Mg+Mg collision

    Get PDF
    We have constructed the X 1SIGMAg+ potential for the collision between two ground state Mg atoms and analyzed the effect of uncertainties in the shape of the potential on scattering properties at ultra-cold temperatures. This potential reproduces the experimental term values to 0.2 inverse cm and has a scattering length of +1.4(5) nm where the error is prodominantly due to the uncertainty in the dissociation energy and the C6 dispersion coefficient. A positive sign of the scattering length suggests that a Bose-Einstein condensate of ground state Mg atoms is stable.Comment: 15 pages, 3 figures, Submitted Phys. Rev.

    Quasiparticle thermal conductivity in the vortex state of high-Tc_c cuprates

    Get PDF
    We present the results of a microscopic calculation of the longitudinal thermal conductivity, κ\kappa, of a d-wave superconductor in the mixed state. Our results show an increase in the thermal conductivity with the applied field at low temperatures, and a decrease followed by a nearly field independent κ(H)\kappa(H) at higher temperatures, in qualitative agreement with the experimental results. We discuss the relationship between the slope of the superconducting gap and the plateau in κ(H)\kappa(H).Comment: 4 pages, 3 figures, very minor changes to text, published versio

    Cohesive properties of alkali halides

    Full text link
    We calculate cohesive properties of LiF, NaF, KF, LiCl, NaCl, and KCl with ab-initio quantum chemical methods. The coupled-cluster approach is used to correct the Hartree-Fock crystal results for correlations and to systematically improve cohesive energies, lattice constants and bulk moduli. After inclusion of correlations, we recover 95-98 % of the total cohesive energies. The lattice constants deviate from experiment by at most 1.1 %, bulk moduli by at most 8 %. We also find good agreement for spectroscopic properties of the corresponding diatomic molecules.Comment: LaTeX, 10 pages, 1 figure, accepted by Phys. Rev.

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/t1U/t \simeq 1) and the intermediate U/tU/t regions (U/t4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/t8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5
    corecore