2,176 research outputs found

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells

    Full text link
    Recently, atomically well-defined cove-shaped graphene nanoribbons have been obtained using bottom-up synthesis. These nanoribbons have an optical gap in the visible range of the spectrum which make them candidates for donor materials in photovoltaic devices. From the atomistic point of view, their electronic and optical properties are not clearly understood. Therefore, in this work we carry out ab-initio density functional theory calculations combine with many-body perturbation formalism to study their electronic and optical properties. Through the comparison with experimental measurements, we show that an accurate description of the nanoribbon's optical properties requires the inclusion of electron-hole correlation effects. The energy, binding energy and the corresponding excitonic transitions involved are analyzed. We found that in contrast to zigzag graphene nanoribbons, the excitonic peaks in the absorption spectrum are a consequence of a group of transitions involving the first and second conduction and valence bands. Finally, we estimate some relevant optical properties that strengthen the potential of these nanoribbons for acting as a donor materials in photovoltaic

    Entanglement versus Quantum Discord in Two Coupled Double Quantum Dots

    Full text link
    We study the dynamics of quantum correlations of two coupled double quantum dots containing two excess electrons. The dissipation is included through the contact with an oscillator bath. We solve the Redfield master equation in order to determine the dynamics of the quantum discord and the entanglement of formation. Based on our results, we find that the quantum discord is more resistant to dissipation than the entanglement of formation for such a system. We observe that this characteristic is related to whether the oscillator bath is common to both qubits or not and to the form of the interaction Hamiltonian. Moreover, our results show that the quantum discord might be finite even for higher temperatures in the asymptotic limit.Comment: 14 pages, 8 figures (new version is the final version to appear in NJP

    Using continuous measurement to protect a universal set of quantum gates within a perturbed decoherence-free subspace

    Full text link
    We consider a universal set of quantum gates encoded within a perturbed decoherence-free subspace of four physical qubits. Using second-order perturbation theory and a measuring device modeled by an infinite set of harmonic oscillators, simply coupled to the system, we show that continuous observation of the coupling agent induces inhibition of the decoherence due to spurious perturbations. We thus advance the idea of protecting or even creating a decoherence-free subspace for processing quantum information.Comment: 7 pages, 1 figure. To be published in Journal of Physics A: Mathematical and Genera

    Pressure and chemical substitution effects in the local atomic structure of BaFe2As2

    Get PDF
    The effects of K and Co substitutions and quasi-hydrostatic applied pressure (P<9 GPa) in the local atomic structure of BaFe2As2, Ba(Fe{0.937}Co{0.063})2As2 and Ba{0.85}K{0.15}Fe2As2 superconductors were investigated by extended x-ray absorption fine structure (EXAFS) measurements in the As K absorption edge. The As-Fe bond length is found to be slightly reduced (<~ 0.01 Angstroms) by both Co and K substitutions, without any observable increment in the corresponding Debye Waller factor. Also, this bond is shown to be compressible (k = 3.3(3)x10^{-3} GPa^{-1}). The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors.Comment: 7 pages, 6 figure

    Evaluation of Microencapsulation of The UFV-AREG1 Bacteriophage in Alginate-Ca Microcapsules using Microfluidic Devices

    Full text link
    The indiscriminate use of antibiotics and the emergence of resistant microorganisms have become a major challenge for the food industry. The purpose of this work was to microencapsulate the bacteriophage UFV-AREG1 in a calcium alginate matrix using microfluidic devices and to study the viability and efficiency of retention. The microcapsules were added to gel of propylene glycol for use as an antimicrobial in the food industry. The technique showed the number of the phage encapsulation, yielding drops with an average 100-250 μ\mum of diameter, 82.1 ±\pm 2% retention efficiency and stability in the gel matrix for 21 days. The gel added to the microencapsulated phage showed efficiency (not detectable on the surface) in reducing bacterial contamination on the surface at a similar level to antimicrobial chemicals (alcohol 70%). Therefore, it was possible to microencapsulate bacteriophages in alginate-Ca and apply the microcapsules in gels for use as sanitizers in the food industry.Comment: 8 pages, 5 figure

    Avaliação de espécies leguminosas na formação de cafezais no segmento da agricultura familiar no Acre.

    Get PDF
    Leguminosas quando consorciadas com o café e usadas como adubação verde podem contribuir fornecendo nitrogênio e proteção ao solo pela adição de matéria orgânica. O trabalho foi conduzido com o objetivo de avaliar o efeito do uso de leguminosas no sistema de produção de café, no segmento de agricultura familiar, visando promover a implantação e a manutenção dos cafezais de forma técnica e economicamente sustentável. O experimento foi conduzido no período de novembro de 2000 a abril de 2003, em delineamento experimental de blocos ao acaso em esquema de parcelas subdivididas, com quatro repetições. Os tratamentos utilizados nas parcelas foram as leguminosas (Stizolobium atterrimum, Cajanus cajan, Canavalia endiformis e Flemingia congesta) e a testemunha (sem leguminosa) e, nas subparcelas, duas doses de N (0 e 22 g de N por cova). A Flemingia congesta e a Mucuna aterrima foram as leguminosas que mais influenciaram positivamente a produtividade dos cafeeiros, independente da adubação nitrogenada. Em relação à testemunha, o aumento em produção foi de 109% quando utilizou-se a Flemingia congesta e 52% com a Mucuna aterrima. A Flemingia congesta foi também a leguminosa que melhor controlou as invasoras, dado o volume de fitomassa produzida e a possibilidade de 2 cortes durante um período de doze meses, evidenciando o potencial desta leguminosa na formação de novos cafezais no Acre. Por outro lado, a Canavalia ensiformis, leguminosa que é normalmente utilizada nas entrelinhas dos cafeeiros pelos cafeicultores, do Acre e de outras regiões produtoras, neste trabalho influenciou negativamente a altura das plantas, diâmetro da copa e crescimento dos cafeeiros

    Quantum Control of a Single Qubit

    Get PDF
    Measurements in quantum mechanics cannot perfectly distinguish all states and necessarily disturb the measured system. We present and analyse a proposal to demonstrate fundamental limits on quantum control of a single qubit arising from these properties of quantum measurements. We consider a qubit prepared in one of two non-orthogonal states and subsequently subjected to dephasing noise. The task is to use measurement and feedback control to attempt to correct the state of the qubit. We demonstrate that projective measurements are not optimal for this task, and that there exists a non-projective measurement with an optimum measurement strength which achieves the best trade-off between gaining information about the system and disturbing it through measurement back-action. We study the performance of a quantum control scheme that makes use of this weak measurement followed by feedback control, and demonstrate that it realises the optimal recovery from noise for this system. We contrast this approach with various classically inspired control schemes.Comment: 12 pages, 7 figures, v2 includes new references and minor change
    • …
    corecore