1,732 research outputs found
An Inductive Power Transfer through metal object
The principle of Inductive Power Transfer (IPT)is very old but it is rarely used for transferring power from source to load via a conductive medium. This is because normally the medium restricts the power transfer due to losses or the shielding effects. However, for low energy applications, an acceptable amount of power could be transferred from the source to the load and it will be of great benefit to oil and gas as well as manufacturing industries to explore. This paper aims at finding the amount of power transferred, the losses and efficiency for a given configuration (metallic pipe) using an analytical model involving equations governing the mechanism of IPT and experimental validation of the derived analytical model. The maximum efficiency of the system for a stainless steel pipe at frequencies of 40Hz to 100Hz is obtained from experimental validation when the load at the output is about 5.55Ω. © 2013 IEEE
Recommended from our members
Amphotericin forms an extramembranous and fungicidal sterol sponge.
For over 50 years, amphotericin has remained the powerful but highly toxic last line of defense in treating life-threatening fungal infections in humans with minimal development of microbial resistance. Understanding how this small molecule kills yeast is thus critical for guiding development of derivatives with an improved therapeutic index and other resistance-refractory antimicrobial agents. In the widely accepted ion channel model for its mechanism of cytocidal action, amphotericin forms aggregates inside lipid bilayers that permeabilize and kill cells. In contrast, we report that amphotericin exists primarily in the form of large, extramembranous aggregates that kill yeast by extracting ergosterol from lipid bilayers. These findings reveal that extraction of a polyfunctional lipid underlies the resistance-refractory antimicrobial action of amphotericin and suggests a roadmap for separating its cytocidal and membrane-permeabilizing activities. This new mechanistic understanding is also guiding development of what are to our knowledge the first derivatives of amphotericin that kill yeast but not human cells
Combining cytotoxicity assessment and Xenopus laevis phenotypic abnormality assay as a predictor of nanomaterial safety
The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of a novel biomedical NP
A database of microRNA expression patterns in Xenopus laevis
MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase
Захист суспільної моралі в інформаційному суспільстві
До питання ролі держави та її інституцій в захисті суспільної моралі, в удосконаленні чинного законодавства з питань захисту суспільної моралі.К вопросу роли государства и его институций в защите общественной морали, в усовершенствовании действующего законодательства по вопросам защиты общественной морали.As to the role of the state and its institutions in the protection of social morality, in improvement of current legislation on protection of social morality
Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues
Treatment Duration of Febrile Urinary Tract Infections
Although febrile urinary tract infections (UTIs) are relatively common in adults, data on optimal treatment duration are limited. Randomized controlled trials specifically addressing the elderly and patients with comorbidities have not been performed. This review highlights current available evidence. Premenopausal, non-pregnant women without comorbidities can be treated with a 5–7 day regimen of fluoroquinolones in countries with low levels of fluoroquinolone resistance, or, if proven susceptible, with 14 days of trimethoprim-sulfamethoxazole. Oral β-lactams are less effective compared with fluoroquinolones and trimethoprim-sulfamethoxazole. In men with mild to moderate febrile UTI, a 2-week regimen of an oral fluoroquinolone is likely sufficient. Although data are limited, this possibly holds even in the elderly patients with comorbidities or bacteremia
Definitions of Urinary Tract Infection in Current Research: A Systematic Review
Defining urinary tract infection (UTI) is complex, as numerous clinical and diagnostic parameters are involved. In this systematic review, we aimed to gain insight into how UTI is defined across current studies. We included 47 studies, published between January 2019 and May 2022, investigating therapeutic or prophylactic interventions in adult patients with UTI. Signs and symptoms, pyuria, and a positive urine culture were required in 85%, 28%, and 55% of study definitions, respectively. Five studies (11%) required all 3 categories for the diagnosis of UTI. Thresholds for significant bacteriuria varied from 103 to 105 colony-forming units/mL. None of the 12 studies including acute cystitis and 2 of 12 (17%) defining acute pyelonephritis used identical definitions. Complicated UTI was defined by both host factors and systemic involvement in 9 of 14 (64%) studies. In conclusion, UTI definitions are heterogeneous across recent studies, highlighting the need for a consensus-based, research reference standard for UTI
Current Pyuria Cutoffs Promote Inappropriate Urinary Tract Infection Diagnosis in Older Women
Background:
Pre-existing lower urinary tract symptoms (LUTS), cognitive impairment, and the high prevalence of asymptomatic bacteriuria (ASB) complicate the diagnosis of urinary tract infection (UTI) in older women. The presence of pyuria remains the cornerstone of UTI diagnosis. However, >90% of ASB patients have pyuria, prompting unnecessary treatment. We quantified pyuria by automated microscopy and flowcytometry to determine the diagnostic accuracy for UTI and to derive pyuria thresholds for UTI in older women.
Methods:
Women ≥65 years with ≥2 new-onset LUTS and 1 uropathogen ≥104 colony-forming units (CFU)/mL were included in the UTI group. Controls were asymptomatic and classified as ASB (1 uropathogen ≥105 CFU/mL), negative culture, or mixed flora. Patients with an indwelling catheter or antimicrobial pretreatment were excluded. Leukocyte medians were compared and sensitivity–specificity pairs were derived from a receiver operating characteristic curve.
Results:
We included 164 participants. UTI patients had higher median urinary leukocytes compared with control patients (microscopy: 900 vs 26 leukocytes/µL; flowcytometry: 1575 vs 23 leukocytes/µL; P < .001). Area under the curve was 0.93 for both methods. At a cutoff of 264 leukocytes/µL, sensitivity and specificity of microscopy were 88% (positive and negative likelihood ratio: 7.2 and 0.1, respectively). The commonly used cutoff of 10 leukocytes/µL had a poor specificity (36%) and a sensitivity of 100%.
Conclusions:
The degree of pyuria can help to distinguish UTI in older women from ASB and asymptomatic controls with pyuria. Current pyuria cutoffs are too low and promote inappropriate UTI diagnosis in older women
Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks
Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.</p
- …