265 research outputs found

    Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7_{0.7}Sr0.3_{0.3}MnO3_{3}

    Get PDF
    The suitability of a particular material for use in magnetic devices is determined by the process of magnetization reversal/relaxation, which in turn depends on the magnetic anisotropy. Therefore, designing new ways to control magnetic anisotropy in technologically important materials is highly desirable. Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic ferromagnet La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} (LSMO) is determined by the proximity to thermodynamic equilibrium conditions during growth. We performed a series of X-ray diffraction and ferromagnetic resonance (FMR) experiments in two different sets of samples: the first corresponds to LSMO thin-films deposited under tensile strain on (001) SrTiO3_{3} by Pulsed Laser Deposition (PLD; far from thermodynamic equilibrium); the second were deposited by a slow Chemical Solution Deposition (CSD) method, under quasi-equilibrium conditions. Thin films prepared by PLD show a in-plane cubic anisotropy with an overimposed uniaxial term. A large anisotropy constant perpendicular to the film plane was also observed in these films. However, the uniaxial anisotropy is completely suppressed in the CSD films. The out of plane anisotropy is also reduced, resulting in a much stronger in plane cubic anisotropy in the chemically synthesized films. This change is due to a different rotation pattern of MnO6_{6} octahedra to accomodate epitaxial strain, which depends not only on the amount of tensile stress imposed by the STO substrate, but also on the growth conditions. Our results demonstrate that the nature and magnitude of the magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during thin-film deposition.Comment: 6 pages, 8 Figure

    Water transfer and crack regimes in nano-colloidal gels

    Get PDF
    International audienceDirect observations of the surface and shape of model nano-colloidal gels associated with measurements of the spatial distribution of water content during drying show that air starts to significantly penetrate the sample when the material stops shrinking. We show that whether the material fractures or not during desiccation, as air penetrates the porous body, the water saturation decreases but remains almost homogeneous throughout the sample. This air-invasion is at the origin of another type of fracture due to capillary effects; these results provide a new insight in the liquid dynamics at the nano-scale. PACS number(s): 47.56.+r, 68.03.Fg, 81.40.N

    Innovación pedagógica para las clases de laboratorio de física

    Get PDF
    The pedagogical innovation here presented has the following objectives: 1- To observe the disposition of students to participate in the group task through the distribution of tasks, the discussion of ideas, the organization and the commitment for the work to carry out. 2- To observe in students the use of critical thinking in the analysis of data, in its interpretation and in the elaboration of conclusions and a laboratory report. The registered students in 2009 in the General and Biological Physics were distributed to groups of 6 members. Each group conducted the laboratory experience and a written report of every practical work (PW). Two categories, one for laboratory tasks and one for the laboratory notebook were used to evaluate the activities carried out by students. The obtained notes by group and PW under both headings depended on the group. The groups performances was better in the laboratory activities than in the notebook. The workgroup encouraged students to achieve a signifi cant learning. However, not having read the theoretical concepts limited the groups to take the initiative to begin the experience and it took them to read the guide simultaneously to fulfi l the PW. This lack of knowledge was also refl ected at the time of emitting the conclusions in the laboratory report

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Interpretación de las curvas del respirador en pacientes con insuficiencia respiratoria aguda

    Get PDF
    La ventilación mecánica es una intervención terapéutica de sustitución temporal de la función ventilatoria enfocada a mejorar los síntomas en los pacientes que sufren insuficiencia respiratoria aguda. Los avances tecnológicos han facilitado el desarrollo de ventiladores sofisticados que permiten visualizar y registrar las ondas respiratorias, lo que constituye una fuente de información muy valiosa para el clínico. La correcta interpretación de los trazados es de vital importancia tanto para el correcto diagnóstico como para la detección precoz de anomalías y para comprender aspectos de la fisiología relacionados con la ventilación mecánica y con la interacción paciente-ventilador. El presente trabajo da una orientación de cómo interpretar las curvas del ventilador mediante el análisis de trazados de presión en la vía aérea, flujo aéreo y volumen en distintas situaciones clínicas.Facultad de Ciencias Médica
    • …
    corecore