9,350 research outputs found

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures

    Get PDF
    To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 V–1 s–1 (5.11×1011 cm–2) was obtained in a sample with a 20 nm thick Ge strained channel

    The Meijer transformation of generalized functions

    Get PDF
    This paper extends the Meijer transformation, Mμ, given by (Mμf)(p)=2pΓ(1+μ)∫0∞f(t)(pt)μ/2Kμ(2pt)dt, where f belongs to an appropriate function space, μ ϵ (−1,∞) and Kμ is the modified Bessel function of third kind of order μ, to certain generalized functions. A testing space is constructed so as to contain the Kernel, (pt)μ/2Kμ(2pt), of the transformation. Some properties of the kernel, function space and its dual are derived. The generalized Meijer transform, M¯μf, is now defined on the dual space. This transform is shown to be analytic and an inversion theorem, in the distributional sense, is established

    Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 Taylor & Francis.An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid‐phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 µg kg−1 to 60 µg kg−1. The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long‐chain nonylphenol polyethoxylates (NP3–12EO) ranged from 16 µg kg−1 to 11754 µg kg−1. The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 µg kg−1 to 6696 µg kg−1.Public Utilities Board of Singapore, Thames Water and Yorkshire Water

    Discovery of a Peculiar Dip from GX 301-2

    Full text link
    We present temporal and spectral properties of a unique X-ray dip in GX 301-2 as seen with Rossi X-ray Timing Explorer in May 2010. The X-ray pulsation from the source gradually declined prior to the dip, disappears for one spin cycle during the dip and is abruptly restored in the spin cycle immediately after the dip. Moreover, the phase-integrated spectrum of the source becomes softer before and during the dip and it quickly hardens again following the dip. Our findings indicate the fact that the mechanism for pulsations gradually turned off briefly and underlying dim and softer emission likely from the accretion column became observable in the brief absence of high level emission due to wind accretion.Comment: Accepted for publication in A&A Letter

    Statistical Basis for Predicting Technological Progress

    Get PDF
    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly tied. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation

    Role of detrusor PDGFRα+ cells in mouse model of cyclophosphamide-induced detrusor overactivity

    Get PDF
    Cyclophosphamide (CYP)-induced cystitis is a rodent model that shares many features common to the cystitis occurring in patients, including detrusor overactivity (DO). Platelet-derived growth factor receptor alpha positive (PDGFRα(+)) cells have been proposed to regulate muscle excitability in murine bladders during filling. PDGFRα(+) cells express small conductance Ca(2+)-activated K(+) channels (predominantly SK3) that provide stabilization of membrane potential during filling. We hypothesized that down-regulation of the regulatory functions of PDGFRα(+) cells and/or loss of PDGFRα(+) cells generates the DO in CYP-treated mice. After CYP treatment, transcripts of Pdgfrα and Kcnn3 and PDGFRα and SK3 protein were reduced in detrusor muscle extracts. The distribution of PDGFRα(+) cells was also reduced. Inflammatory markers were increased in CYP-treated detrusor muscles. An SK channel agonist, CyPPA, increased outward current and hyperpolarization in PDGFRα(+) cells. This response was significantly depressed in PDGFRα(+) cells from CYP-treated bladders. Contractile experiments and ex vivo cystometry showed increased spontaneous contractions and transient contractions, respectively in CYP-treated bladders with a reduction of apamin sensitivity, that could be attributable to the reduction in the SK conductance expressed by PDGFRα(+) cells. In summary, PDGFRα(+) cells were reduced and the SK3 conductance was downregulated in CYP-treated bladders. These changes are consistent with the development of DO after CYP treatment

    An application of hybrid life cycle assessment as a decision support framework for green supply chains

    Get PDF
    In an effort to achieve sustainable operations, green supply chain management has become an important area for firms to concentrate on due to its inherent involvement with all the processes that provide foundations to successful business. Modelling methodologies of product supply chain environmental assessment are usually guided by the principles of life cycle assessment (LCA). However, a review of the extant literature suggests that LCA techniques suffer from a wide range of limitations that prevent a wider application in real-world contexts; hence, they need to be incorporated within decision support frameworks to aid environmental sustainability strategies. Thus, this paper contributes in understanding and overcoming the dichotomy between LCA model development and the emerging practical implementation to inform carbon emissions mitigation strategies within supply chains. Therefore, the paper provides both theoretical insights and a practical application to inform the process of adopting a decision support framework based on a LCA methodology in a real-world scenario. The supply chain of a product from the steel industry is considered to evaluate its environmental impact and carbon ‘hotspots’. The study helps understanding how operational strategies geared towards environmental sustainability can be informed using knowledge and information generated from supply chain environmental assessments, and for highlighting inherent challenges in this process

    Tunable spin-selective loading of a silicon spin qubit

    Full text link
    The remarkable properties of silicon have made it the central material for the fabrication of current microelectronic devices. Silicon's fundamental properties also make it an attractive option for the development of devices for spintronics and quantum information processing. The ability to manipulate and measure spins of single electrons is crucial for these applications. Here we report the manipulation and measurement of a single spin in a quantum dot fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that the rate of loading of electrons into the device can be tuned over an order of magnitude using a gate voltage, that the spin state of the loaded electron depends systematically on the loading voltage level, and that this tunability arises because electron spins can be loaded through excited orbital states of the quantum dot. The longitudinal spin relaxation time T1 is measured using single-shot pulsed techniques and found to be ~3 seconds at a field of 1.85 Tesla. The demonstration of single spin measurement as well as a long spin relaxation time and tunability of the loading are all favorable properties for spintronics and quantum information processing applications.Comment: 4 pages, 3 figures, Supplemental Informatio

    Quantum control and process tomography of a semiconductor quantum dot hybrid qubit

    Full text link
    The similarities between gated quantum dots and the transistors in modern microelectronics - in fabrication methods, physical structure, and voltage scales for manipulation - have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. While quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Further, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins, or the addition of a third quantum dot. Here we demonstrate a new qubit that offers both simplicity - it requires no special preparation and lives in a double quantum dot with no added complexity - and is very fast: we demonstrate full control on the Bloch sphere with π\pi-rotation times less than 100 ps in two orthogonal directions. We report full process tomography, extracting high fidelities equal to or greater than 85% for X-rotations and 94% for Z-rotations. We discuss a path forward to fidelities better than the threshold for quantum error correction.Comment: 6 pages, excluding Appendi
    corecore