15,388 research outputs found

    Satellite To Satellite Doppler Tracking (SSDT) for mapping of the Earth's gravity field

    Get PDF
    Two SSDT schemes were evaluated: a standard, low-low, SSDT configuration, which both satellites are in basically the same low altitude nearly circular orbit and the pair is characterized by small angular separation; and a more general configuration in which the two satellites are in arbitrary orbits, so that different configurations can be comparatively analyed. The standard low-low SSDT configuration is capable of recovering 1 deg X 1 deg surface anomalies with a strength as low as 1 milligal, located on the projected satellite path, when observing from a height as large as 300 km. The Colombo scheme provides an important complement of SSDT observations, inasmuch as it is sensitive to radial velocity components, while keeping at the same performance level both measuring sensitivity and measurement resolution

    Shimura varieties in the Torelli locus via Galois coverings of elliptic curves

    Get PDF
    We study Shimura subvarieties of Ag\mathsf{A}_g obtained from families of Galois coverings f:C→C′f: C \rightarrow C' where C′C' is a smooth complex projective curve of genus g′≥1g' \geq 1 and g=g(C)g= g(C). We give the complete list of all such families that satisfy a simple sufficient condition that ensures that the closure of the image of the family via the Torelli map yields a Shimura subvariety of Ag\mathsf{A}_g for g′=1,2g' =1,2 and for all g≥2,4g \geq 2,4 and for g′>2g' > 2 and g≤9g \leq 9. In a previous work of the first and second author together with A. Ghigi [FGP] similar computations were done in the case g′=0g'=0. Here we find 6 families of Galois coverings, all with g′=1g' = 1 and g=2,3,4g=2,3,4 and we show that these are the only families with g′=1g'=1 satisfying this sufficient condition. We show that among these examples two families yield new Shimura subvarieties of Ag\mathsf{A}_g, while the other examples arise from certain Shimura subvarieties of Ag\mathsf{A}_g already obtained as families of Galois coverings of P1\mathbb{P}^1 in [FGP]. Finally we prove that if a family satisfies this sufficient condition with g′≥1g'\geq 1, then g≤6g′+1g \leq 6g'+1.Comment: 18 pages, to appear in Geometriae Dedicat

    Interplay between bending and stretching in carbon nanoribbons

    Full text link
    We investigate the bending properties of carbon nanoribbons by combining continuum elasticity theory and tight-binding atomistic simulations. First, we develop a complete analysis of a given bended configuration through continuum mechanics. Then, we provide by tight-binding calculations the value of the bending rigidity in good agreement with recent literature. We discuss the emergence of a stretching field induced by the full atomic-scale relaxation of the nanoribbon architecture. We further prove that such an in-plane strain field can be decomposed into a first contribution due to the actual bending of the sheet and a second one due to edge effects.Comment: 5 pages, 6 figure

    Semi-autonomous Intersection Collision Avoidance through Job-shop Scheduling

    Get PDF
    In this paper, we design a supervisor to prevent vehicle collisions at intersections. An intersection is modeled as an area containing multiple conflict points where vehicle paths cross in the future. At every time step, the supervisor determines whether there will be more than one vehicle in the vicinity of a conflict point at the same time. If there is, then an impending collision is detected, and the supervisor overrides the drivers to avoid collision. A major challenge in the design of a supervisor as opposed to an autonomous vehicle controller is to verify whether future collisions will occur based on the current drivers choices. This verification problem is particularly hard due to the large number of vehicles often involved in intersection collision, to the multitude of conflict points, and to the vehicles dynamics. In order to solve the verification problem, we translate the problem to a job-shop scheduling problem that yields equivalent answers. The job-shop scheduling problem can, in turn, be transformed into a mixed-integer linear program when the vehicle dynamics are first-order dynamics, and can thus be solved by using a commercial solver.Comment: Submitted to Hybrid Systems: Computation and Control (HSCC) 201

    Orbital dynamics of "smart dust" devices with solar radiation pressure and drag

    Get PDF
    This paper investigates how perturbations due to asymmetric solar radiation pressure, in the presence of Earth shadow, and atmospheric drag can be balanced to obtain long-lived Earth centred orbits for swarms of micro-scale 'smart dust' devices, without the use of active control. The secular variation of Keplerian elements is expressed analytically through an averaging technique. Families of solutions are then identified where Sun-synchronous apse-line precession is achieved passively to maintain asymmetric solar radiation pressure. The long-term orbit evolution is characterized by librational motion, progressively decaying due to the non-conservative effect of atmospheric drag. Long-lived orbits can then be designed through the interaction of energy gain from asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the usual short drag lifetime of such high area-to-mass spacecraft can be greatly extended (and indeed selected). In addition, the effect of atmospheric drag can be exploited to ensure the rapid end-of-life decay of such devices, thus preventing long-lived orbit debris

    Optical Spectroscopy of X-Mega targets in the Carina Nebula - VI. FO 15: a new O-Type double-lined eclipsing binary

    Full text link
    We report the discovery of a new O-type double-lined spectroscopic binary with a short orbital period of 1.4 days. We find the primary component of this binary, FO 15, to have an approximate spectral type O5.5Vz, i.e. a Zero-Age-Main-Sequence star. The secondary appears to be of spectral type O9.5V. We have performed a numerical model fit to the public ASAS photometry, which shows that FO 15 is also an eclipsing binary. We find an orbital inclination of ~ 80 deg. From a simultaneous light-curve and radial velocity solution we find the masses and radii of the two components to be 30 +/- 1 and 16 +/- 1 solar masses and 7.5 +/- 0.5 and 5.3 +/- 0.5 solar radii. These radii, and hence also the luminosities, are smaller than those of normal O-type stars, but similar to recently born ZAMS O-type stars. The absolute magnitudes derived from our analysis locate FO 15 at the same distance as Eta Carinae. From Chandra and XMM X-ray images we also find that there are two close X-ray sources, one coincident with FO 15 and another one without optical counterpart. This latter seems to be a highly variable source, presumably due to a pre-main-sequence stellar neighbour of FO 15.Comment: 11 pages, 9 figures, 3 tables. Accepted for publication in MNRAS. Higher resolution version available at http://lilen.fcaglp.unlp.edu.ar/papers2006.htm
    • …
    corecore