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ABSTRACT

A new analytical tool has been formulated (and the related
software developed) for carrying out performance evaluation of
satellite-to-satellite doppler tracking (SSDT) schemes devoted to
the recovery of gravity anomalies in the earth crust. Two
schemes have been evaluated: a) a "standard,® low-low, SSDT
configuration, in which both satellites are in basically the same
low altitude nearly-circular orbit and the pair is characterized
by small angular separationm b) & more general configuration
(the Colombo scheme) in which the two satellites are in arbitrary
orbits, so that differcat configurations (such as the "high-low"
mode) can be comparatively analyzed. By using the analytical
tool above, it has been found that the "standard" low-low SSDT
configuration is capable of recovering 1° x 1° surface anomalies
with a stregth as low as 1 milligal, located on the projected
satellite path, when observing from a height as large as 300 km
(angular separation of the two satellites: 6° to 8°)., This
configuration has also been shown to be capable of resolving, for
instance, two 207 milligal anomalies of the same sign, each
1° x 1°, located 2° apart on the projected satellite path, when
observing from an altitude of 200 km (satellites' angular
separation 5°). The Colombo scheme, in the "high-low" mode,
provides an important complement of "low-low" SSDT observations,
inasmuch as it is sensitive to radial veiocity components, while
keeping at the same performance level both measuring sensitivity
and measurement resolution. It also offers substantial advantages
with respect to the "standord" low-low case, from the standpoint

of drag compensation requirements.
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l. INTRODUCTION

Satellite-to-satellite Doppler tracking (8SDT) is a
promising method of obtaining information about the fine-
structure of the earth's gravitational field, which as yet has

not been extensively utilized (l1-4). The method offers the

advantages of wide coverage and sensitivity sufficient to detect
and measure anomalies on the order of 1 mgal over wavelengths in
the 100 km range. Given the cost of actual SSDT experiments, it
is desirable to have compuver models available in which various
relevant parameters such as satellite height, satellite orbital
configuration, satellite separation, anomalous mass distribution,
integration time, and noise level can be varied for use in
studies designed to compare the relative merits of different
configurations and the ability of the method to obtain the
anomalous mass distribution from Doppler relative velocity data

under different assumptions.

The primary coal of this study is to obtain an economical
method for carrying out such sensitivity and feasibility studies.
We have developed a method that applies not only to the
"standard®” low-low SSDT configuration in which both satellites
are in basically the same, near-circular, low earth orbit with
small angular separation, but to the general case in which the
two satellites are in arbitrary orbits, so that the method can be
used to compare different configurations. We have applied this
technique to the problem of recovering gravitational anomalies in
several practical cases. We were particularly interested in a

compariso~ of the efficiency of the standard low-low
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configuration with an alternative configuration, proposed by

Dr. Giuseppe Colombo 5f the Smithsonian Astrophysical Observatory
(8AO). The latter, which would obtain information about both the
radial and anguiar variations in the gravitational potential in
the region of space through which the satellites move, is

discussed in more detail here below.

An additional problem that we have addressed is the choice
of altitude and spacing of the satellites in the low-low
configuration. There 18 an obvious tradeoff involved between
signal strength and detectable wavelength in the choice of
satellite altitude. That is, the lower the altitude is, the
greater the signal strength, but for a given integration time the
dimensions of detectable longtitudinal variations that can be
resolved decrease with decreasing altitude. The necessity of
minimizing atmospheric drag places a practical lower limit on the
altitude as well. Wider spacing between satellites also improves
both signal strength and resolution up to a point. We have
conducted a number of simulations to determine the relative
velocity signatures for various choices of satellite height and
separation for gravitational anomalies directly beneath the
satellite path and at various distances from the path. This
study is reported in detail below in both graphical and tabular

form.

Since the use of a drag-free system would eliminate a
possibly troublesome source of uncertainty in the anomalous
relative velocity measurements, we have also studied the savings

that might be expected for such a system thrcugh the use of the
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Colombo scheme referred to above and examined in detail in the

body of this report.

The basic problem involved in SSDT studies, using either
actual or simulated data is to convert the raw measurements of
relative line~-of-sight velocity between the two satellites into
an anomalous mass distribution on or within the earth. The first
problem is to eliminate che port.on of the relative velocity
variations due to causes other than gravitational anomalies,
i.e., those due to the "standard" terrest.rial gravitational field
(which can be defined in various ways in simulation studies), to
atmospheric drag, and to the various other small verturbations
that are well-known in satellite dynamics (radiation pressure,
etc.). This of course includes the contribution due to the
difference in the satellite orbits, which is zero only in the
case of perfectly circular orbits with non-central force term
neglected. To obtain the actual relative velocity from doppler
measurements the contrioution due to the variation in the
ionospheric electron density, i.e., the index of refraction, must
be removed. An additional factor that could be important in an
actual experiment is the integration time. 1In the present atudy
we assume that ionospharic corrections have been made correctly
and that measurements are instantaneous though separated by time
intervals corresponding to the integration time. There is no
inherent reason why this last assumption must be made. It is
made only for convenience, and the same software could be used to
study the effects of integration time on the recovery of short

wavelength anomalies.
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Once we have obtained the relative velocity variation and we
have separated the part due to the gravity anomaly as defined
above, we are faced with the problem of converting this velocity
variations data into either a special additional mass
distribution (+ or ~-) or a special variation of potential
distribution on, say, the earth's surface. The first step in
this conversion process involves obtaining formulae that give the
relative velocity components in terms of the anomalous potential
at the satellite positions. The differential equations relating
satellite position and velocity and the anomalous potential at
the satellite position are easily obtainad from the general
equations of motion. We have dealt with the problem of solving
these equations by obtaining linearized equations for the
perturbed satellite co-ordinates, which can then be easily

integrated by numerical techniques.

Implicit in this integration is of course a particular form
for the anomalous potential at the satellite position. A simple
formulation, and one that can be applied to the analysis of
actual data and to simulation studies, is that of the potential
due to a grid of surface patches on which either the difference
in the potential between the actual case and the standard model is
known or an equivalent variation of surface mass density is
known. The potential outside the surface, at the satellite
position for example- due to such a distribution is readily

obtained from potential theory.

J
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Having obtained the perturbed relative velocity as a linear
function of surface anomaly strengths, we are then in a position
to utilize least-squares fitting to obtain the best estimate of
surface strength values (for the particular model) relative to
the data, which can be either actual data or data simulated by an
independent method, such as integrating the full equations of
motion for the satellites in the presence of and in the absence

of gravitational anomalies.

In outline then, this is the program we have fo'lowed, and
we have been able to demonstrate that our method of nbtaining
perturbed relative velocity works well in the sense that, not
only does the velocity signature for a given anomaly distribution
obtained by this method closely correspond to that obtained by
the more lengthy simulation procedure, such as integrating the
full equations, but the anomaly distribution obtained by the
least-squares inversion technique also agrees well with the input
simulation distribution for a linear array of surface elements
oriented along the satellite path. As expected, the resolving
power is found to be weaker for the case of a linear array of
elements oriented perpendicular to the satellite path or at
various distances below the earth's surface. This ability to
recover the simulation mass anomaly distribution is the crucial
test, and we have documented the success of the method in a
number of different cases. In addition, we propose further
studies that could easily be undertaken utilizing the software we
have developed. Both the method used and the results obtained

are explained in detail in the following sectionrs.
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2. SATELLITE ALTITUDE AND SEPARATION STUDY

Before proceeding to demonstrate the recoverability of an
anomolous mass distribution (or gravitational potential
distril:ution) by least-squares fitting, we addressed the question
of optimal altitude and satellite separation from the standpoint
of signal strength and observed wavelength of the perturbed
relative velocity waveform caused by a single one degree by one
degree surface mass anomaly. We have simulated a number of
caces, varying satellite height and separation as well as the
distance of the anomaly from the path of the satellite projected
onto the earth's surface. This was done only for the standard
low-low configuration with an eccentricity of 0,001 and with
altitudes ranging from 175 km to 300 km, angular separations
ranging from two to eight degrees, and distances of the anomaly
from the projected satellite path of zero to 40 degrees (one
degree corcesponds to approximately 110 km). To be more
specific, the satellite heights considered were 175, 200, 250,
and 300 km, while the separation choices were two, four, five,
six, and eight degrees. The angular separation of the anomalies
from the projected satellite path was taken in ten degree

increments.

Figures 1-13 display the perturbed relative velocity
signatures for a number of these simulations. The relative
velocity is plotted in mm/sec versus the time ir seconds. Both
the initial satellite positions and the longtitude of the anomaly
are held constant throughout. The orbit is equatorial for

simplicity of interpretation. The surface gravitational
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anomalies are all of the same dimensions (1° x 1°) and strength
as well: 200v mgals. Since the effect is very nearly linear,
one can obtain the relative velocity amplitude for any arbitrary
anomaly strength (of the same surface area) by changing the

velocity and anomaly strengths in the same ratio,

The pattern that emerges from studying these relative
velocity signatures is quite clear and has an obvious physical
explanation. First let us consider the sequence of Figures 1,
2(a), 3(a), and 4, corresponding to an altitude of 175 km and
separations of two, four, six, and eight degrees, respectively.
The anomaly is fixed directly on the projected satellite path for
this sequence. As the separation between the satellites
increases, we note an increase in the amplitude of the relative
velocity waveform. The waveform takes its particular shape due
to the fact that first one, then the other satellite undergoes an
acceleration due to the anomaly, which exerts a significantly
different effect on the satellite behavior only when the
diffeience in satellite-to-anomaly distance becomes significant.
When the satellite separation is small, the second satellite to
"see"™ the anomaly begins to do so before the first one through
has reached its maximum perturbed velocity. This diminishes the
maximum relative perturbed velocity observed. Thus we see a
steady increase in signal strength in going from to two to six
degrees, which bagins to level off the-eafter «8 the perturbed
relative velocity begins to approach the perturbed velocity of
the individual satellite most affected by the gravitational

anomaly. In Figure 4, with a separation of eight degrees, we ses
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that we are approaching the point where each satellite sees the
anomaly separately. This is evidenced by the shoulder in the

curve between the two extremes in perturbed relative velocity.

The same general behavior is observed in the corresponding
200km altitude sequence of Figures 5, 6(a), 7(a), and 8 and in
the similar sequences for 250 km and 300 km altitudes. These
results indicate that for detecting gravitational anomalies with
dimensions of around 100 km by 100 km a satellite separation of
some five to six degrees should be optimum for the low-low con-
figuration. Since the Wolf (4) approximations uged to relate
perturbed relative line-of-sight velocity to anomalous
gravitational potential become less accurate as the separation
increases, this points to the necessity of obtaining a more
general; tast, and economical way of obtaining this relationship,

which is tle main subject this report.

Anothes obvious and expected phenomenon one can note in
these figures is a decrease in signal strength as the satellite
height is increased (for a given satellite separation). Since
all of the peak-to-peak signals are tabulated below we shall not

discuss this effect further.

When we study the changing behavior of the perturbed
relative velocity signature for fixed height and separation and
variable anomaly position we notice that the shape of the
waveform changes and that tnere is an overall downward shift in
the data , so that for anomaly-to-path distances of twenty

degrees or more the perturbed relative velocity is negative from

N e o G RELERL - RATR RS
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the beginning. We ascribe this to the geometry of the
configuration. While the "leading” satellite is still gi.en a
greater perturbed velocity than the "trailing” one in the first
half of the path, the component of perturbed velocity along the
line-of-sight, i.e., the original direction of motion, is greater
for the trailing satellite. This is just a consequence of our
taking the initial "unperturbed" position so close (in terms of
differential satellite distances) to the off-line anomaly.

The peak-to-peak signal ctrength is seen to fall drastically
as the distance from the projected satellite path is increased.
All of the results are tabulated below (see Table 1) in terms of
peak-to-peak perturbed relative velocity signal strength per mgal
of anomaly strength. It is hoped that in future
satellite-to-saiellite Doppler tracking experiments noise levels
in the perturbed relative velocity measurements can be kept below
10"* m/sec or 10-’ m/sec. Since the last column in the table
gives the peak-to-peak signal strength in units of 10" ° m/sec due
to a one degree by one degree surface anomaly of 1 mgal strength,
it can be used as a measure of whether such an anomaly would
cause a signal of sufficient magnitude to be detectable for the
various altitudes and separations in the low-low configuration.
Clearly a 1 mgal directly on the projected satellite path will
give a eignal well above the 10~°® m/sec noise level in all cases.
The peak-to-peak signal falls off by 50 percent in going from 175
km height to 300 km height for satellite separation of 8 degrees.
Since the 300 km signal should still be more than adequate for

anomaly recovery and since the atmospheric drag would be much
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smaller at this altitude, this factor would seem to make the

higher altitude attractive for an actual experiment.

As the anomaly is moved away from the projected satellite
path it begins to make a decided difference whether or not the
more stringent condition on the noise (noise < 20"7 m/sec) can be
met. The numbers in the table speak for themselves. As we show
in another sectiocn dealing with recoverability of anomalies
aligned perpendicular to the projected orbital path, there is
another problem associated with detecting off-line anomalies.

But this is basically a resolution problem due to the similarity
of perturbed velocity signatures between two anomalies that are
close to each other and both at some distance from the projected

orbital path.

One other feature of the simulated signal strength data is
worth pointing out. As the distance of the anomaly from the
projected satellite path increases, the effect of varying the
satellite height becomes less important. This is simply because
the distance from the anomaly to the projected satellite path
becomes much larger than the altitude and becomes the dominant
contribution to the satellite-to-anomaly distance which

determines the velocity response.
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altitude
(km)

175
175
175
175
175
175
175
175
200
200
200
200
200
200
200
200
250
250
250
250
250
300
300
300
300
300
300
300

300

Table 1
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Velocity Signal Strengths for
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3. THL RECOVERY OF GRAVITATIONAL ANOMAL IES PROM RELATIVE
VELOCITY DATA

Although the perturbed velocity due a given surface
distribution of gravitational anomalies can be obtained by
numerically integrating the equations of motion for a satellite
in the resultant gravitational field, as it is done in the Apollo
Soyuz Test Project (ASTP) integration program, which was
developed for this purpose at SAO, it is desirable to obtain a
more economical method since in feasibility/sensitivity studies
one may wish to study numerous different cases, varying
parameters such as orbital height, satellite separation, and
orbital configuration, as well as the anomaly distributions. 1In
the original low-low scheme proposal by Wolf (4), energy conser-
vation is utilized to obtain a linear relation between the perturbed
along-the~-track velocity and the anomalous potential at the

satellite position. This is done as follows.

Since gravity is a conservative force (and this ircludes the

force due to any surface anomalies) we have

15V2(r,8)+U(r)+T(r,0)=5V2(r-,0°)+U(r-)+T(r-,0") (1)

where V is the satellite velocity, U the central potential due to
the spherically symmetric part of the earth's mass distribution,
and T(r, ¢) is the anomalous gravitational potential, which in

general includes all higher order harmonics of the earth's
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potential, but which for the purposes of the present discussion
we limit to the potential due to some surface distribution of
gravitational anomalies. The primed and unprimed variables refer
to any two different points along the satellite orbit. The angle
6 determines the position of the satellite along the orbital
path. For a nearly circular orbit r° & r, so that the the

central potential terms are nearly equal at the two points.

Since T is assumed to be much smaller than U, the components

of the perturbation in velocity (relative to the case when T = 0)
are much smaller than the unpertucbed velocity V . Thus
v2=(V#cl*;“)2=V02+2V°v"2+v“2+v‘2 )

ay?
Vo *ZVGV"

where v, and v, are the components of the perturbed velocity
along the unperturbed path and perpendicular to the unperturbed
path, respectively. The quadratic terms are negligible in
comparison with the linear term in v, . Combining equations (1)

and (2) gives the simple linear relation

Vi (8, )-vu (8, )=(T(8,)-T(8,))/2V, (3)

where 6; and 6, are any two positions along the orbit.
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In the case where there are two satellites wvoving in the
same unperturbed orbit but with angular separation aé the

expression

Va (0 +80) -Vu (8)=(T(0)-T(8 +a8))/2V, ()

obviously applies from the previous aralysis. If the angular
separation is small, then the relative line-nf-sight velocity,
i.e. the velocity determined by a Doppler measurement between
the two satellites, is approximately equal to this difference in
the along-the-track velocity. This is the beauty of the low-low
scheme: by the use of energy conservation it turns the problem
of obtaining satellite height anomalous potential values from
Doppler velocity data into a geometrica) problem. It is
important to note the limitations of this scheme, however. It is
strictly applicable only to circular unperturbed orbits with
smal) anqular separation. Since there are other considerations
that recommend an angular spacing of some 5 degrees, as we
demonstrate later on, it is important to investigate what kind of
errors are introduced by equivalencing the relative velocity and

the difference in along-the~track velocity.

In the general case cf two arbitrary satellite orbits
another approach is necessary. We are interested in solving this
problem because a scheme that can deal with arbitrary satellite

separation is needed for the low-low case and because one of the
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aims of this study is to investigate an alternative orbital
configuration which samples both vertical and horizontal
components of the gradient of the anomalous pocential, utilizing

orbits with non-negligible eccentricity.

The ASTP ..itegrator (or any program that integrates the
complete equations of motions) must solve six differential
equations (3 position co-ordinates, 3 velocity co-ordinates), and
the velocity equations involve non-linear functions of the
spatial co-ordinates through the gradients of U and T as defined
above. Under the assumption that the unperturbed orbits of the
two satellites are co-planar; so that perturbations that are
perpendicular to the orbital plane are irrelevant to the relative
line-of-sight velocity to first order, we can reduce the problem
to the sclution of four differential equations in perturbed
variables, all of which are linear in these variables. This is

done in the following way.

First we write down the Lagrangian for a unit mass satellite
moving in a potential that consists of the two already familiar

parts U and T:

L=3s(+% +r%8%)u(r)-T(r,0) (5)

Here r and o are obvious polar co-ordinates of thz satellite (o
= f + w, where £ is the true anomaly and « the argument of

perigee). As mentioned above, the other angular co-ordinate is

R
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irrelevant to the discussion. The equations of motion are then

aT
Y (6)

vhere M = 2 5 is the angular momentum. The zeroth order

unperturbed equaticns are

o ‘o arlrsr, (7)

If we eliminate the unperturbed part of the equations of

motion and linearize the resulting equations we obtain

. ZM 2@4\ ¢
& = - gl-+ 2 M+ (—= - 36 %) er
ro,3 r 3 0
0 0
L (8)
M= -3
where ér and M = 2 r,6,%r + r2 66 are perturbations in the

radial co-ordinate and angular momentum, respectively.

We thus have the system of four linear differential
equations to sclve:

d (sry 20, 2o o G
at (&r) ik 3 &M (1 + 3e cosf)

0 ro’
d 3 .
(6r) = sr
at (9)
PR

j% (68) = (&M - 2ro éosr)/ro2
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where G is the gravitational constant, Me the mass of the earth,

e is the orbital eccentricity and £ the true anomaly.

We utilize a Runge-Kutta integration package RKF45 to solve
these equations. To integrate these equations we must assume a
particular form for the anomalous potential at the satellite
posit! .ns. First let us consider the potential due to a
distribution of anomalous suiface mass density. Since we must
have a potential that is linear in some variable parameters in
order to carry out our least-squares fitting program, we use the
approximation in which the surface mass density is constant over
a given surface area, or in which we approximate a continuous
distribution by a discrete one, breaking up the earth's surface
into small surface areas and assigning the average value of the
surface mass density over each small surface to that entire
subsurface. The gravitational potential due to such a surface
mass density is given by direct integration, using the Newtonian

formula for the potential due to an arbitrary mass distribution.

T(F) = R’ fﬂﬁi—h’—"- (10)
where §(r — R)o is the mass density, with R the radius of

the earth and ¢ the surface mass density. The integration is
over the solid angle that defines the subsurface. The vector o
locates the space point (satellite position in our application)

at. which the potential is evaluated relative to a point on the
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e A R MR

subsurface of integration. Figure 14 shows the geumetrical
relationship between various position vectors and co-ordinates.

In equation (10) we have:

e = /rz + R2 .2rR cosy

. (M)

The derivatives are then

AT (r-R cos¥)a(’“,¢")d:"
<
T R 3
- szf-";—; 2E03¥ o(5740°)da" (13)

Since we wish to work in an inertial co-ordinate system, we
need to express all gquantities in terms of inertial co-ordinates.
In particular we must express the cosine of the angle between ;
and ¥ in terms of these co-ordinates. The desired expression is

obtained directly by use of rotation matrices to be

cosy = sing” sin i sine+ cos¢-cos( "= )cos8
+cose-sin(r* -2)cosi sing (14)

where the relevant orbital parameters are defined as in Figure
15, and the inertial lcngitudinal angle locating the subsurface
varies linearly in time as the earth rotates.

When we take the space point defined by T to be the
satellite position, then the only quantities in the expression
for the potential that vary are r, 6, and \*. Since, by
assumption, the perturbing potential makes only small variations
in the satellite orbit we can take the time variation in r and ¢
to be given directly by the unperturbed solution to Kepler's
equation. The variation in 2“ depends only on the rotational 5
velocity of the earth. The remaining problem is then to carry
out the surface integration. For obtaining the design matrix we
have just taken the value of the integrand at the center of the
surface times the surface area. This amounts to a point mass

approximation which should be adequate for initial studies of the
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sort we are undertaking. To generate the simulated data we broke
the surface into a 3X3 grid of smaller surfaces and took the
force contribution to the complete equations of motion from each
surface to be the sum of the gradients of the potentials due to

these subsurfaces.

The relationship between the surface mass density and the
corresponding gravitational anomaly (anomalous gravitational
acceleration) is easily obtained from Laplace's equation for the
gravitational field and the use of the divergence theorem. This

relationship is

49=-2nGo (15)

where o is the equivalent surface density (gram/m’) and G is the
gravitational constant. This expression allows us to use
gravitational anomalies in mgals as input into the simulation

runs and to obtain these quantities in our least-squares fitting.

An alternative procedure would be to obtain the
gravitational potential at the satellite position due to a
surface distribution of potential. To do this the Laplace
integral is utilized, which gives

R(r*- R* ) \ T(1.¢")dn"
I 3 (16)
A

' 2erTd..’ - '_3R(r2 - R )f(r-F. coss )Td.~ (17)
ar 4 RE 4n 5

T(¥)

"

>-—

3R(r - R )‘ng & _cosy _Tda” (18)
4n 0o -0
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The variables defined in these expressions are the same as those
used in the previous expression for the potential due to a

surface mass distribution.

We should mention that an additional level of complexity can
be added by letting the anomalous masses be distributed beneath
the earth's surface as well as on the surface. We have studied
only a few such cases, and this is another area that would seem

to deserve further study.

To obtain the complete design matrix that we require for our
least-squares fitting procedure we must obtain the perturbed
relative velocity due to the perturbed quantities obtained by the
Runge-Kutta integration routine. The relative line-of-sight
velocity is defined by

. 19)
‘ (

where the subscripts refer to the two different satellites.

Pigure 16 defines the quantities graphically.

Then the perturbed relative velocity §,'? is given by

12

v Ty r12=:frl(Fl-cmose12+r2(é1-é2)sin612)

+<5r"1(r1-r2coselz) (20

+ir.(r,-r,cos8,,)

4’(651-582){S‘inelz(rzjrz*l."zl"l)“'COSG 12r1r;(él-éz)}]

12,
v, _érl(rzcose1 -rl)+6r2(rlcose

2 12772)

-rlr:sinelz(ce}-éez)]
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where

<+
[
nis

rs = (l‘lz + l‘gz ‘2r)r2C05912)]/2 = ' 1

4. DESCRIPTION OF THE SOFTWARE

We have developed a software package suitable for use in
sensitivity/feasibility studies and for determining (in the
least-squares sense) surface anomaly distributions from actual

satellite-to-satellite Doppier tracking data.

In summary, the components of this software system are:
I) The ASTP integrator. This package of routines integrates the
equations of motion for a satellite (or two satellites
simultaneously) with given initial position and velocity vectors
or, equivalently, initial Kepler orbital elements. The force
acting on the satellite consists of numerous terms in addition to
the central force of the spherically symmetric part of the
earth's gravitational field. These terms, which include higher
order harmonics of the terrestrial field, can be activated or not
as desired. Most importantly for the present applications, the
force due to a surface gravitational anomaly distribution can be
included.
I1I) The "standard" low-low configuration model anomaly package.
This model uses conservation of energy to obtain the dominant
term in the perturbation of the relative line-of-sight velocity
between two satellites in a given orbit due to a given surface

anomaly in the gravitational field.
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I1I1) The general model anomaly package. This model obtains the
perturbation in relative velocity by integrating the linearized
differential equations for perturbations to the velocity of each
satellite due to a given surface anomaly. A Runge-Kutta routine
(RKP45) is used to carry ocut this integration (5).

IV) The Singular Value Decomposition (SVD) package. Taking as
input the relative velocity matrix generated by I or II for a
given sample of data points and set of surface anomalies, this
set of routines obtains the singular value decompositon of the
design matrix as well as the two matrices U and V (defined below)
which transform the design matrix into the diagonal form. These
three output matrices are then used to obtain least-squares fits
corresponding to the particular model and orbit of the original

design matrix for actual or simulated Doppler data.

Schematically these components interface in the way shown in
Figure 17. The upper part of the diagram shows the method used
to obtain simulated Doppler data. (A) The ASTP integration
package is first used to obtain the relative velocity of the two
satellites along a given path at selected times, or sample
points, for given initial conditions and with no gravitational
anomalies. For example, in the standard low-low configuration
the two satellites might be chosen to have the same low-altitude
(say 200 km) nearly circular orbit except for a small (say 5
degree) separation due to a difference in perigee. The relative
velocities (6§ v ;} for the zero-anomaly case, which are due
strictly to orbital effects and vanish in the limit of zero

eccentricity, are stored on a disk file for later use. (B) Now
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the ASTP integrator is run again with the same initial satellite
positions and velocities but with a given surface anomaly
distribution on the earth { Agil. The relative velocity values

{ §vi ) are obtained for the same times as in step A. The values
obtained in step A are then retrieved from the digk file on which
they were stored and are then subtracted from the new relative
velocity values. The resulting set of values is then the
perturbed relative velocity set ($ v5 }, corresponding to the
anomaly distribution ( Agi}. This is taken to be the simulated
data. The step B can be repeated for as many different anomaly
distributions as desired for a given orbital path without
repeating step A. In fact, since the effect of the surface
anomalies is linear, simulated data from any linear combination
of anomaly distributions can be obtained directly from the
corresponding linear combination of 5v3 } without re~-running
the ASTP integrator, a fact which can be utilized to reduce

computer time.

The lower part of the diagram schematically illustrates the
method used to obtain the design matrix and its singular value
decomposition I, which is then utilized in the least-squares
fitting. The following section describes this part of the

process in more detail.

e ST

E
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5. THE LEAST-SQUARES FITTING

The general method of least-squares fitting of data to a
particular model assumes that one can approximate the actual
measured values of the quantity of interest by a linear
combination of basis functions (this is what we mean by the
model), which may be nonlinear functions of the independent
variable. For our purposes we may take the independent variable
to be the time of observation or, equivalently, an angular
variable such as the true anomaly. 1In the present instance the
appropriate basis functions cannot be written down in closed form
since they are obtained only through the integratior of the
differential equations (9). However, since our equations are
linear, we know that these basis functions exist. Note that the
equations must be linear in all the perturbed variables and in
the anomalous potential (or its derivatives) for the method to be
applicable. Each basis function corresponds to a different
surface element, and the value of each basis function at a given
time is determined strictly by the geometry of the particular

orbit in question.

It is useful to introduce the concept of the design matrix
in discussing the method. This is the rectangular matrix A in
which each column corresponds to a definite basis function
evaluated at the different observation times. In our case the
design matrix consists of perturbed relative velocity values due
to unit strength anomalies on the different surface elements,

i.e.

Ayg = ovylty) = evr,, (21)

iJ

¥
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wvhere évi(tj ) is the perturbed relative velocity due to the ith
surface element at time t;. Then the least-squares program is to
minimize the sum of the squares of the residuals, where the ith

residual is defined by

l“j = Aijc1 "5V'(tj) (22)

by choosing the best set of coefficients (c;).

To accomplish this we have utilized a sincular value de-
composition routine SVD (5). The singular value decomposition
method allows us to transform the design matrix into a diagonal
matrix I, the diagonal elements of which are known as the
singular values of A. In this form the least-squares solution is
trivial, assuming the singular values are not too small. Then
this solution, which corresponds to a transformed set of basis
functions, can be transformed into the solution corresponding to
the initial basis functions. A powerful feature of this method
is that it indicates if any of the basis functions are (almost)
linearly dependent and allows one to eliminate meaningless
solutions by setting the coefficients of the transformed (into
the "singular” system) basis functions equal to zero if the
corresponding singular value is less than the cutoff value. 1In
practice this cutoff must be chosen in accordance with the
accuracy of the data measurements or machine accuracy. Such a

cutoff turned out to be necessarv when a linear array of surface
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elements oriented perpendicular to the orbital path was studied,
whether it was on the earth's surface or in the vertical

direction.

Another powerful feature of this method is that the singular
value decomposition © and the two orthogonal matrices U and V

that transform A into by

A = ULV (23)

need only be computed once for a given orbital path and surface
element array, i.e., for a given design matrix. The r , U, and V
matrices can then he used over and over to obtain new
least-squares fits to any number of simulated or actual data sets

corresponding to the same orbital path.

6. THE ECCENTRIC SATELLITE PAIR SCHEME (Colombo Method)

The eccentric scheme, originally proposed by Dr. Giuseppe
Colombo of SAO, appears to have a number of virtues that make it
an attractive alternative to the standard low-low configuration.
One of the primary goals of this study is to examine this scheme
in more detail and obtain a better, quantitative evaluation of
its characteristics, both in terms of retrieval of gravitational

anomalies and economy.
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The scheme is based on two satellites with very low
area-to-mass ratios (or, alternatively, a drag free system) in
near-earth orbits. The slightly eccentric orbits are symmetric
with respect to the earth's center; the orbital elements of the
two satellites are as follcws, and their relative configuration
is depicted in Figure 18,

Some numerical examples of the proposed configuration are
given below, together with values for the true anomaly 6+ when
the two satellites are at the same altitude. 1In the examples, we
have assumed that the Shuttle is the launching platform and have
chosen three injection altitudes (220, 300, and 360 km). The
perigee height has been kept consgtant at 160 km; the optimum
perigee height will be the height at which the effect of gravity
is at a minimum. The optimum apogee height will be based on the
length of the system's lifetime.

g%!!glﬁ_l. The Shuttle is in a circular orbit at 220-km height; the two

satelT{tes have the same semimajor axis, with pe. igee at 160 km and apogee at
280 km. We will then have

a=6598km , e~ 0.009094 , o = $90°52
Example 2. The Shuttle is in a circular orbit at 300-km heignt; the two
sate1YTtes h

es have the same semimajor axis, with perigee at 160 km and apcgee at
440 km. We have

a=6678km , e=0.0209 , o =$91°20

Example 3. The Shuttle is in a circular orbit at 360-km height; the two
;;tel es have the same semimejor «>is, with perigee at 160 km and apogee at
0 km. We have

06738 km , @=0.0298 , o = 29170
From Figure 18 the fundamental property of the Colombo

scheme is evident: The line of sight between the satellites
takes on several geometric relationships with respect to specific
points on the earth's surface. When, for instance, one satellite
is at perigee, the other is at the apogee, and the line of sight

between the two is perpendicular to the earth's surface (radial

2
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direction). When the true anomaly of one of the satellites is
6* , the line of sight is horizontal. Therefore, the scheme is
capable of measuring the radial and horizontal components of the
velocity differential twice per orbit. 8ince the nodal line and
the apsidal line precess, this sampling will cover the entire
earth in a latitude span corresponding to twice the inclination.
The inclination should not be too close to critical if we want
the apsidal line to precess fast enough to give the required

coverage,

7. ATMOSPHERIC DRAG AND THE COLOMBO SCHEME

A drag compensation system to eliminate the effects of drag
on the relative velocity between the two spacecraft would
certainly be the most effective way of eliminating noise due to
variations in atmospheric density. However, the inclusion of
such a system does increase the total cost of the experiment by a
considerable amount. Thus an orbital configuration that
maintains the sensitivity of the system to gravitational
anomalies but decreases the fuel expenditure of the drag
compensation system is highly desirable. 1In another section of
this report we demonstrate that the Colombo scheme is as
effective at detecting gravitational anomalies as the standard
low-low scheme. We now examine it from the standpoint of fuel

economy assuming a drag compensation system to be required.
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At lover altitudes, the sensitivity of the system to gravity
anomalies is better, but more fuel is consumed in order to
compensate for atmospheric drag. A trade- off must be made
between sensitivity and lifetime in chosing the orbit for the
spacecraft. In the Colombo scheme, the spacecraft would be in
eccentric orbits in order to combine the advantages of the
low-low and the high-low configurations. A computer program has
been written for integrating the drag on the satellite during one
orbit in order to evaluate the orbital lifetime for various

altitudes and eccentricities.

The equation for an elliptical orbit is

r=a(1-e’) (24)

1 + ecoss®

where r is the distance from the center of the earth, o is the
angular position measured from perigee, a is the semi-major axis,
and e 1is the orbital eccentricity. For small eccentricity we

can write approximately

r = a(1-ecose) (25)

The velocity v is given by

v = /@Re‘1?7r - 1/a) (26)
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The atmospheric density o can be represented approximately by

e-(h-ho)/c

PR, (27)

wvhere n, is the density at h = h, and ¢ is the scale height. fhe

drag force F on the spacecraft is

F = Apv? (28)

where A is the drag cross seciion. The rate of fuel consumption

necessary to counteract the drag force is given by

= i = gm!
Fe=mv="3 (29)

where V is the exhaust velocity zid m is the rate of fuel

consumption. The total mass m of the fuel used is

m=fdm=%det (30)

In order to do the integration in the variable ¢ instead of t,
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we can make the transformation
dx = rde = vdt (31)
or
dt = rde / v (32)

This approximation is valid for low eccentricity orbits
where v is nearly perpendicular to r. With this transformation

the integral becomes

1 .
- rrdo
v e

3
"

Substituting F = Apy? we have

% J/kpvrde (34)

3
"

This expressing has been used to integrate the drag around one
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orbit (6 = 0, 2v). The program actually computes

mV/A = ﬁvrde (35)

which has the units of dyne-sec/cm? in the cgs system.

A set of runs has been done with the following parameters;
GMP- 3.986013 X 10°° (cgs), h = 200 km., o = 2,54 X 10713

g/cm?® , ¢ = 30 km. The table below lists the drag for various

orbits.
Table I1

Values of Drag For Various Orbits
Perigee a Apogee Drag

(km? {km) (km) (dyne-cm/sec?)
200 200 200 817.20
180 180 180 1589.27
180 200 220 910.55
180 220 260 628.76
180 240 300 492,53
180 260 340 415.78
180 280 380 366.60
180 300 420 331.94

For the same semi-major axis, the drag increases with
eccentricity. For example if the altitude decreases by one scale
height, the drag increases by a factor of e = 2,718, 1If the
altitude increases by one scale height, the drag decreases by a

factor l/e = ,3678,

These results show that the Colcmbo scheme results in large

savings compared to the standard low-low scheme, represented by

the first two entries in the table. The question of overall
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sensitivity is not so easy tc answer without more extensive
study. It is quite clear from the anomaly recovery analyeis we
have made that for a given value of the perigee the Colombo
scheme compares faverably with the standard low-low configuration
as long as it is in the high-low portion of its operation. 1In
comparing the circular 200 km low-low orbit (first entry in the
table) with the a = 260 km, apogee=340 km Colombo configuration
we find that the fuel expenditure for the circular orbit is
almost 100 percent greater. The overall sensitivity of the
Colombo case should be at least as good for a major part of the
orbit. By referring back to the low-low perturbed relative
velocity signatures of a single anomaly for 200 km and 250 km
given in Figures 5, 6, 7, 8, 9, and 10 we can get an idea of how
sensitivity compares during the low-low portion of the Colombo
configuration. While the peak-to-peak signal strength may drop
off as much as 50 percent in the Colombo configuration depending
on the angular separation between the satellites it should be
well above the threshold of detectability for anomalies of the
order of 2 mgal, of dimension one square degree. Thus the Colombo
scheme would seem to be quite competitive in terms of
sensitivity, while offering substantial savings if a drag

compensation system is utilized.
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8. LONGITUDINAL LINEAR ARRAYS OF GRAVITATIONAL ANOMALIES

The critical test of the entire software package we have
developed is whether the design matrix obtained by the use of the
linearized equations for the perturbed velocity and space
co-ordinates can, when coupled to the singular value
decomposition routines, be used to recover a surface anoinaly
distribution by least-squares fitting to the corresponding
relative velocity data generated in an independent simulation.
In other words, can the system take data such as that shown in
Figures 1-13 and obtain a good reconstruction of the surface
anomaly distribution that caused the particular velocity
signature observed? We have examined this problem in detail for
a number of linear arrays of one degree by one degree surface
anomalies for the standard low-low configuration and for the
Colombo configuration in the high-low portion of the orbit.
Figures 19-22 show the results of a series of simulation
experiments in recovering the input surface anomalies by use of

the least-squares fitting procedure outlined above.

Figures 19 and 20 display results of this procedure for a
number of linear distributions of surface anomalies lying
directly beneath the paths of two satellites in the low-low
configuration. The design matrix is obtained for a ten-element
array, and the anomaly strengths for each of these surface
elements are subsequently obtained through the least-squares
fitting procedure for each set of simulated data, the data having
been simulated by the ASTP integration routine as outlined in the
section devoted to software. The perturbed relative velocity

data are displayed in Figures 19(a)-19(e), and a comparison

(s
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between input distribution and recovered distribution is shown
for each case in Figure 20, where the input anomaly strength has

been normalized to 10mgal.

The satellites are at an altitude of 200 km with an angular
separation of five degrees. The orbital parameters common to
both satellites are an eccentricity of 0.001 and an inclination
of 0.00001°, so that the orbits are nearly equatorial. These
parameters were chosen merely for convenience, since the program

can handle arbitrary orbits.

The perturbed relative velocity is shown aa function of time
in Figures 19(a) through 19(e) in units of mm/sec, where the
strength of a given one~degree by one-degree anomaly is 20 mgal.
Figure 19(a) shows the signature of a single such anomaly and is
very similar to the one shown in Figure 6(a). Figure 20(a) shows
that, except for a slight underestimation of the peak anomaly
strength and some side structure, the least-squares determined
anomaly strengths agree well with the input values. The
underestimation as well as the side structure is probably a
consequence of our taking a point mass approximation in obtaining
the design matrix while dividing the surface element into 9
subelements in the data simulation process. In any case the
method has clearly determined where the central cause of the

disturbance lies.

Figure 19(b) shows the signature of two such anomalies

separated by one element with zero anomaly strength. An

approximate doubling of the amplitude and a brcadening of the

¥
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peaks is observed, but it is far from obvious to the eye that
there is a gap between the two anomalies. However, the fitting
routine does see this difference, as the results plotted in
Figure 20 demonstrate. The dual anomaly is clearly seen in plot
20(b) with excellent resolution. 7The same can be said for the
next case, a dual anomaly separated by two zero—-anomaly surface
elements. The relative velocity signature for this case is shown
in Figure 19(c) and the corresponding fitting results in Figure
20(c) .

The rest of the plots in Figure 20 are further evidence that
the basic software is working well in terms of discrimination,
although there are some errors. Figure 19(e) shows the velocity
signature of a gravitational dipole, in which there are two
anomalies of opposite sign and equal strength separated by a
single zero-anomaly element. Figure 20(e) shows this
distribution to have been recovered quite well. The widely
separated dual anomaly (eight degrees between non-zero anomaly
elements) whose signature in Figure 19(d) clearly shows the two
anomalies as separate events showed a little more noise in the
fitted anomaly strengths. In restrospect it seems likely that
the oscillations about zero seen in the fitted values of Figure
20(d) might have been reduced had we applied a more stringent
cutoff on our allowed singular values. But prior to our
experience with the more clearly linearly dependent results of
the transverse surface and vertical linear arrays we had not been
forced to examine this question since the fits for the

longtitudinal arrays were good in general.
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Figures 21(a)-21l(e) show the perturbed velocity signatures
for a Colombo configuration during the portion of the orbits for
which the radial separation is at a maximum. The surface anomaly
arrays are the same as those considered in the low-low
configuration, the data for which are displayed in Figure 19, and
they follow the same order in both sequences. It is immediately
apparent that the velocity signatures are quite different in the
two cases. This is largely due to the increased importance of

the radial velocity components in the Colombo case.

For our parameters the maximum radial separation is around
140 km. There is essentially no angular separation in this case.
The lower satellite is at an altitude of around 175 km. We
denote this the high-low case in the figures, but it should not
be confused with the standard high-low case. Here we refer only
to the high-low portion of the Colombo configuration orbit. The
plots of Figure 22 show that, even though the velocity signatures
are markedly different from those seen in the low-low case, the
ability of the method to obtain least-squares fitted values that
agree closely with the input values is nearly the same, with the
low=-low configuration holding a slight edge. Whether this slight
advantage would hold up if one of the basis functions had been
eliminated remains to be seen. Time did not permit our running
the various cases again with the cutoff criterion found to be
cptimum in the transverse array cases. The fitted signatures,
i.e. the signatures obtained by using the fitted anomaly values,
are virtually indistinguishable from the simulated signatures in

both low-low and high-low cases.
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9. TRANSVERSE AND VERTICAL LINEAR ARRAY RECOVERY

Time did not permit an extensive investigation of anomaly
recovery for cases where the surface anomalies are not arrayed
along the projected satellite path. We do have some preliminary
results to report, however, which illustrate both the added
difficulties in unambiguously resolving transversely aligned
anomalies and some features of the SVD routines that are useful

in such cases.

Figure 23 shows the results for a number of cases of surface
anomaly elements aligned perpendicular to the projected satellite
path on the earth's e:rface for the same low-low orbit considered
in the analysis of longitudinal linear arrays (Figures 19 and
20), This time the design matrix is determined for ten one
degree by one degree surface anomalies at a single longitude.

The display of simulated perturbed relative velocity data has
been omitted for the standard low-low cases since they are
qualitatively similar to the plots previously displayed for
off-line anomalies. The comparisons of input anomaly
distribution with least-squares fitted anomaly distribution
follow the same format that was used in the longitudinal linear
array studies, except that in some of the input/output
comparisons there is more than one set of fitted anomaly values.
These different sets of recovered anomaly distributions
correspond to different choices of the singular value cutoff of
the design matrix. Since the fits were judged to be sufficiently
good to demonstrate the success of the fitting method in the

previously analyzed cases of linear arrays aligned parallel to
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the projected orbital path, and since the ratio of largest to
smallest singular value was in those cases less than 108 , no
cutoff was made in either the standard low-low or Colombo
configuration examples previously analyzed. In the present case
of a transverse array, however, it was immediacely apparent that
a cutoff would be necessary to eliminate unreasonably large
fitted coefficients for what were essentially null vectors in the
space corresponding to the singular value decomposition. This
was apparent both from the very poor success in recovering the
input anomaly distribution when no cutoff was made and from the
large ratio of largest to smallest singular value, which was in
this case greater than 108 . The choice of singular value cutoff
beyond which the singular basis functions are to be considered
null depends on the accuracy of the simulated perturbed relative
velocity data and on the machine accuracy of the computer. We
did not make a systematic study of the accuracy of the ASTP
integration, and we held th: parameter which determines that
accuracy fixed at a value that had been deemed sufficient for
earlier work. Thus it is possible that significantly better fits
might have been obtained with more accurate simulations. There
is hardly reason to doubt, however, that our ASTP simulated data

is as accurate as it could be expected for real data.

FPigure 23(a) shows the results of the least-squares fitting
for a single input anomaly five degrees from the projected
satellite path, where two different singular value cutoffs have
been used. Neither of these fits can begin to compare with those

previously obtained for anomalies directly on the projected
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satellite path. They both show a broad peak more or less
centered on the single input spike. The ratio of maximum
singular value to minimum allowed singular value is indicated by
the Greek letter tau in these plots. There is not a great deal
to choose from among these three different cutoffs. The 107°
cutoff results show flatten out the peak more and shift it
somewhat to a lower value. The fit obtained with v = 107 was
judged better than either of these having a peak of 3.5 at the
central point of the distribution. It should be noted, however,
that the fits obtained with a cutoff of 10°® (not shown) were
terrible. The 10”2 cutoff eliminates six of the ten singular

basis functions.

Figures 23(b) and 23(c) show results of further fitting in
the standard low-low configuration where 1 = 10°3., In the one
case a single anomaly nine degrees off-line served as input, and
in the other case there were two anomalies, one on-line and the
other nine degrees off. These fits, while definitely providing
some information about the surface mass distribution, are again
inferior to results obtained in the all-on-line cases. However,
this is to be expected. Figure 23(d) shows the rarults of
attempts to resolve a dual resonance with a single degree of
separation. Again we see that the fit obtains a picture of the
average mass distribution over dimensions larger than our surface

elements.
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In addition to the low-low configuration case of Figure
23(d), we obtained corresponding results for Tt = 1073 using the
Colombo configuration analyzed before. FPFigure 24 shows the
perturbed relative velocity signature for this high-low Colombo

configuration.

Finally, we considered one case in which the anomaly lay
beneath the earth'., surface (on another surface at a lower
radius). This was done for the Colombo configuration previously
studied. The design matrix was obtained for a series of ten
surface elements starting on the earth's surface and continuing
downward at 100 km radial intervals. The case for which fits
were obtained had a single anomaly 200 km beneath the earth's
surface. The fitting was done for cutoff values corresponding to

t = 10”7 and 10"%. These results are displayed in Figure 25.
As in the transverse surface array case, the procedure fails to
recover the sharp peak of the distribution. Although neither fit
is a very accurate representation of the actual distribution, the
1 = 1072 has less negative overshoot at the greater depths below

the surfacsa.

10, CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The major goal of this study has been accomplished. We have
developed software for use in SSDT sensitivity/feasibility
studieg that is both simple and economical to use and which
combines these features with considerable power of analysis.

This was accomplished by obtaining numerical solutions to the

I
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linearized differential equations describing the perturbed
velocity and position co-ordinates expressed in the most concise
way. This reduction of six non-linear differential equations to
four linear ones resulted in significant savings in computer
time. The numerical solutions provide an advance over the
standard Wolf equations which strictly apply only to circular
orbits in which the satellite separation is small. Through the
use of our software it is possible to consider arbitrary orbital
configurations for SSDT ranging from the low-low configurations
with optimum satellite separation to the high-low configuration
in which only one satellite responds significantly to
gravitational anomalies. The Colombo scheme, which is in a sense
a hybrid form that combines the low-low and high-low

configurations, is readily analyzed with this software as well.

By use of a least-squares fitting routine applied to data
simulated by an independent integration of the full equations of
motion we have demonstrated that one degree by one degree surface
anomalies in the earth's gravitational field can be well resolved
by the SSDT method when the anomaliea lie directly beneath the
path of the satellites in both the standard low-low configuration
and in the Colombo variation. This was done for several

different anomaly distributions.

Moreover, the singular value decomposition procedure used in
the least-squares fitting provides an indication on when surface
anomalies cannot be unambiguously resolved. In the case of a
linear array of surface anomalies oriented perpendicular to the

projected satellite path we found that the degree of resolution
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possible was considerably less than for an array parallel to the
satellite path. In this case it was possible only to recover an
anomaly smeared over several adjacent surface elements. A
preliminary study of vertically (subsurface) aligned anomalies
yielded similar results with respect to resolution and

recoverability in the Colombo configuration.

Our study of signal strength as a function of satellite
height and separation indicated that a separation of arpund six
degrees appears to be optimum and that higher altitudes up to
300 km should still measure a sufficiently strong signal to
detect 1 mgal anomalies. The Colombo scheme was shown to offer
significant savings over the standard low-low scheme for a given

value of perigee assuming a drag compensation system is utilized.

The Colombo scheme {(described in detail in the body of the
report) was found to match the standard low-low configuration in
resolving power and anomaly recovery for a single pass over the
surface of interest. An interesting compairison, that we did not
have sufficient time to carry out, would be between two passes
over the same surface area with the standard low-low scheme and
two passes with the Colombo configuration in its two extreme
modes of low-low and high-low. Such a study should be made with
a variety of rectangular anomaly distributions. In particular,
the resolving power of the two schemes should be tested when
there is noise in the data, a factor which we have ignored in our

preliminary studies.
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We can conclude that our anomaly recovery analysis, althougn
it must be considered only a first step (since we have taken into
account only single linear arrays while ignoring complications
such as noise, and we have neglected the possible "interference"
of localized gravity anomalies with the higher-order harmonics of
the Earth gravity field), it has provided nevertheless relevant
deductions on the ability of the SSDT method, in its various
configurations, to contribute significantly to the improvement of

our understanding of the fine-grain features of the earth gravity

field.
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v

Figure 2(a). Second example of perturbed relative velocity
signature (anomaly location: 0° from projected
satellite path).
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"Altitude of satellite
pair: 175 km

*Angular separation: 4° e

‘Anomaly: a single, 1° x 1°,
200v milligal surface anomaly

‘Standard low-low configuration

Figure 2(b).

450.00 500.00

Example as in Figure 2(a), but with anomaly
location 10° from projected satellite path.
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g
&, "Altitude of satellite
pair: 175 km
‘Angular separation: 4°
8l ‘Anomaly: a single, 1° x 1°,
200 milligal surface anomaly
‘Standard low-low configuration
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Figure 2(c). Example as in Figure 2(a), but with anomaly
location 20° from projected satellite path.
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‘Altitude of satellite -
pair: 175 km

"Angular separation: 6°

"Anomaly: a single 1° x 1°,
200~ milligal surface anomaly

‘Standard low-low configuration

e - 4 A

0.00

50.00 100.00 150.00 200.00 égb.ooTI Eabo.oo 350.00 400.00 450.00 500.00 550.0
M

co—— (sec)

Figure 3(a). Third example of perturbed relative velocity

signature (anomaly location: 0° from projected
satellite path).
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‘Altitude of satellite
pair: 175 km

‘Angular separation: 6°

‘Anomaly: a single, 1° x 1°,
200m mgal surface anomaly

*Standard low-low configuration

-
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Figure 3(b). Example as in Figure 3(a), but with anomaly
location 10° from projected satellite path.
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gl ~ pair: 175 km
"Angular separation: 6°
"Anomaly: a single, 1° x 1°,
3l 200 mgal surface anomaly
‘Standard low-low configuration
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Figure 3(c).

Example as in Figure 3(a), but with anomaly
location 20° from projected satellite path.
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‘Anomaly: a single 1° x 1°,
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‘Standard low-low configuration
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Figure 4. Fourth example of perturbed relative velogity
signature (anomaly location: 0° from projected
satellite path).
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*Altitude of satellite
8] pair: 200 km

"Angular separation: 2°

‘Anomaly: a single, 1° x 1°,
g 200w mgal surface anomaly

*Standard low-low configuration

350.00 400.00 450.00 500.00 550.00

Figure 5. Fifth example of perturbed relative velocity
signature (anomaly location: 0° from projected
satellite path).
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pair: 200 km
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Figure 6{a). Sixth example of perturbed relative velocity
signature (anomaly location: 0° from projected

satel. ite path).
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Figure 6(b) lggggion 10° from projected satellite path.
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‘Altitude of satellite
pair: 200 km

‘Anqular separation: 4°

‘Anomaly: a siagle, 1° x 1°,
200+ mgal surface anomaly

"Standard low-low configuration

+ + + +
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+ +
¢ 4
0.00 $0.00 100.00

Figure 6(c).

150.00 200.00 350.00 400.00 450.00 500.00 550.00

.00 300.00
TIME
(sec)

Example as in Figure 6(a), but with anomaly
location 20° from projected satellite path.
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‘Altitude of satellite
" pair: 200 km
1 ‘Angular separation: 4°
‘Anomaly: a single, 1° x 1°,
o 2007 mgal surface anomaly
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Figure 6(d). Example as in Figure 6(a), but with anomaly
location 30° from projected satellite path.
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*Altitude of satellite
pair: 200 km

‘Angular separation: 4°

‘Anomaly: a single, 1° x 1°,
200+ mgal surface anomaly

‘Standard low-low confiquration

Figure 6(e).

Example as in Figure 6(a), but with anomaly
location 40° from projected satellite path.
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8 ii "Altitude of satellite
=+ & pair: 200 km
*Angular separation: 6°
8| *Anomaly: a single, 1° x 1°,
it 200n mgal surface anomaly
‘Standard low-low configuration
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Figure 7(a).

Seventh example of perturbed relative velocity
signature (anomaly location: 0° from projected

satellite path).
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84 ‘Angular separation: 6°
*Anomaly: a single, 1° x 1°,
200n mgal surface anomaly
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Figure 7(b).

Example as in Figure 7(a), but with anomaly
location 10° from projected satellite path.
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pair: 200 km
8l *Angular separation: 6°
*Anomaly: a single, 1° x 1°,
200n mgal surface anomaly
34 ‘Standard low-low configuration
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Figure 7(c). Example as in Figure 7(a), but with anomaly
location 20° from projected satellite path.
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200+ mgal surface anomaly
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B
&}
“;qb
i
n
8 + + + 4 + + + ——
'0.00 50.00 100.00 150.00 200.00 ooT IME 300 350.00 400.00 450.00 $00.00 $50.00
(sec)

Figure 7(d). Example as in Figure 7(a), but with anomaly
location 30° from projected satellite path.
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"Altitude of satellite
pair: 200 km

"Angular separation: 6°

"Anomaly: a single, 1° x 1°,
200 mgal surface anomaly
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Figure 7(e). Example as in Figure 7 (a), but with anomaly
location 40° from projected satellite path.
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*Altitude of satellite
pair: 200 km

‘Angular separation: 8°

‘Anomaly: a single, 1° x 1°,
200n mgal surface anomaly

‘Standard low-low configuration

o500

Figure 8.

4
>
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v Qe o

Eighth example of perturbed relative velocity
signature (anomaly location: 0° from projected
satellite path).
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Figure 9. Nineth example of perturbed relative velocity
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‘Altitude of satellite
pair: 250 km

‘Angular separation: 5°

"Anomaly: a single, 1° x 1°,
200v mgal surface anomaly

‘Standard low-low configuration

Figure 10(a).

epwe .o

Tenth example of perturbed relative velocity
(anomaly location: 0° from projected satellite
path).
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*Altitude of satellite
pair: 250 km

‘Angular separation: 5°

‘Anomaly: a single, 1° x 1°,
2007 mgal surface anomaly

‘Standard low-low confiquration

100.00

.80
8

Figure 10(b).

150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00

(sec)

Example as in Figure 10(a), but with anomaly
location 10° from projected satellite path.
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84 ‘Anomaly: a single, 1° x 1°,
200n mgal surface anomaly
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Figure 10(c).

Example as in Figure 10(a), but with anomaly
location 20° from projected satellite path.

| aprre . et GREAG YIS < Y . o



Page 69

¥
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=1 pair: 250 km
‘Angular separation: 5°
8l "Anomaly: a single, 1° x 1°,

200m mgal surface anomaly
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Figure 10{dl). Example as in Figure 10(a), but with anomaly
location 30° from projected satellite path.
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4, ‘Altitude of satellite
patr: 250 km
" ‘Angular separation: §°
‘Anomaly: a single, 1° x 1°,
2007 mgal surface anomaly
&:\\\\\\\\ ‘Standard low-low confiquration
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Figure 10(e).

Example as in Figure 10(a), but with anomaly
lgcagion 40° from projected satellite path.
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‘Altitude of satellite
pair: 300 km

‘Angular separation: 2°

‘Anomaly: a single, 1° x 1°,
200n mgal surface anomaly

*Standard low-low configuration
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Figure 11. Eleventh example of perturbed relative velocity

(anomaly location:
path).

0° from projected satellite
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g pair: 300 km
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ho! “Anomaly: a single, 1° x 1°,
200n mgal surface anomaly

; ‘Standard low-low configuration

~?

50

gib
5 —
;JB*;/'

81?

¥

8

R

8 ) , . A — ; : : :

Tor00 $0.00  100.00  15.00  200.00 Fso.oo”HEaBo.oo 30.00 400,00 450.00  500.00  550.00

(sec)

i 2(a). Twelfth example of perturbed relative velocigy
Figure 12(a) (anomaly location: 0° from projected satellite

path).
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*Altitude of satellite
pair: 300 km

‘Angular separation: 5°

"Anomaly: a single, 1° x 1°,
200n mgal surface anomaly

"Standard low-low configuration
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Figure 12(b).

e o

Example as in Figure 12(a), but with anomaly
locaticn 10° from projected satellite path.




A i

Page 74

-16
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< pair: 300 km
“l B
B ‘Angular separation: 5°
: ‘Anomaly: a single, 1° x 1°,
g 2007 mgal surface anomaly
T *Standard low-low configuration
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Figure 12(c). Example as in Figure 12(a), but with anomaly
locaticn 20° from projected satellite path.
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‘Altitude of satellite
pair: 300 km

‘Angular separation: 8°

‘Anomaly: a single, 1° x
200m mgal surface anomaly

1°,

‘Standard low-low configuration

o 3-00

Figure 13.
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Thirteenth example of perturbed relative velocity

(anomaly location:
path).

0° from projected satellite
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Satellite Position

0 Earth Center

p = rse=-a cny

Figure 14.
position vector.

satellite and surface ancmaly coordinates and
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Figure 15. Satellite orbital elements.
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Figure 18.

- - X
R Ag=Ag Bo=B4

Geometrical configuration of the Colombo scheme.
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