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ABSTRACT

A new analytical tool has been formulated (and the related

software developed) for carrying out performance evaluation of

satellite-to-satellite doppler tracking (SSDT) schemes devoted to

the recovery of gravity anomalies in the earth crust. Two

schemes have been evaluated: a) a "standard," low-low, SSDT

configuration, in which both satellites are in basically the same

low altitude nearly-circular orbit and the pair is characterized

by small angular separations	 b) a more general configuration

(the Colombo scheme) in which the two satellites are in arbitrary

orbits, so that differLat configurations (such as the "high-low"

mode) can be comparatively analyzed. By using the analytical

tool above, it has been found that the "standard" low-low SSDT

configuration is capable of recovering 1 0 x 1 0 surface anomalies

with a stregth as low as 1 milligal, located on the projected

satellite path, when observing from a height as large as 300 km

(angular separation of the two satellites: 6 0 to 80 ). This

configuration has also been shown to be capable of resolving, for

instance,two 20w milligal anomalies of the same sign, each

1 0 u 1°, located 2 0 apart on the projected satellite path, when

observing from an altitude of 200 km (satellites' angular

separation So ). The Colombo scheme, in the "high-low" mode,

provides an important complement of "low-low" SSDT observations,

inasmuch as it is sensitive to radial velocity componentsp while

keeping at the same performance level both measuring sensitivity

and measurement resolution. It also offers substantial advantages

with respect to the "standard" low-low case, from the standpoint

of drag compensation requirements.
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1. INTRODUCTION

Satellite-to-satellite Doppler tracking (SSDT) is a

promising method of obtaining information about the fine-

structure of the earth's gravitational field, which as yet has

not been extensively utilized (1-4). The method offers the

advantages of wide coverage and sensitivity sufficient to detect

and measure anomalies on the order of 1 mgal over wavelengths in

the 100 km range. Given the cost of actual SSDT experiments, it

is desirable to have computer models available in which various

relevant parameters such as satellite height, satellite orbital

configuration, satellite separation, anomalous mass distribution,

integration time, and noise level can be varied for use in

studies designed to compare the relative merits of different

configurations and the ability of the method to obtain the

anomalous mass distribution from Doppler relative velocity data

under different assumptions.

The primary goal of this study is to obtain an economical

method for carrying out such sensitivity and feasibility studies.

We have developed a method that applies not only to the

"standard" low-low SSDT configuration in which both satellites

are in basically the same, near-circular, low earth orbit with

small angular separation, but to the general case in which the

two satellites are in arbitrary orbiter so that the method can be

used to compare different configurations. We have applied this

technique to the problem of recovering gravitational anomalies in

several practical cases. We were particularly interested in a

I 	
compariso^ of the efficiency of the standard low-low
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configuration with an alternative configuration, proposed by

Dr. Giuseppe Colombo of the Smithsonian Astrophysical Observatory
a	

(SAO). The latter, which would obtain information about both the

radial and angular variations in the gravitational potential in

the region of space through which the satellites move, is

discussed in more detail here below.

An additional problem that we have addressed is the choice

of altitude and spacing of the satellites in the low-low

configuration. There is an obv;Lous tradeoff involved between

signal strength and detectable wavelength in the choice of

satellite altitude. That is, the lower the altitude is, the

greater the signal strength, but for a given integration time the

dimensions of detectable longtitudinal variations that can be

resolved decrease with decreasing altitude. The necessity of

minimizing atmospheric drag places a practical lower limit on the

altitude as well. Wider spacing between satellites also improves

both signal strength and resolution up to a point. We have

conducted a number of simulations to determine the relative

velocity signatures for various choices of satellite height and

separation for gravitational anomalies directly beneath the

satellite path and at various distances from the path. This

study is reported in detail below in both graphical and tabular

form.

Since the use of a drag-free system would eliminate a

possibly troublesome source of uncertainty in the anomalous

relative velocity measurements, we have also studied the savings

that might be expected for such a system through the use of the
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Colombo scheme referred to above and examined in detail in the

Cody of this report.

The basic problem involved in SSDT studies, using either

actual or simulated data is to convert the raw measurements of

relative line-of-sight velocity between the two satellites into

an anomalous mass distribution on or within the earth. The first

problem is to eliminate the portion of the relative velocity

variations due to causes other than gravitational anomalies,

i.e., those due to the "standard" terrestrial gravitational field

(which can be defined in various ways in simulation studies), to

atmospheric drag, and to the various other small perturbations

that are well-known in satellite dynamics (radiation pressure,

etc.). This of course includes the contribution due to the

difference in the satellite orbits, which is zero only in the

rase of perfectly circular orbits with non-central for.ca term

neglected. To obtain the actual relative velocity from doppler

measurements the contribution due to the variation in the

ionospheric electron density, i.e., the index of refraction, must

be removed. An additional factor that could be important in an

actual experiment is the integration time. In the present at udy

we assume that ionospheric corrections have been made correctly

and that measurements are instantaneous though separated by time

intervals corresponding to the integration time. There is no

inherent reason why this last assumption must be made. It is

made only for convenience, and the same software could be used to

study the effects of integration time on the recovery of short

wavelength anomalies.
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Once we have obtained the relative velocity variation and we

have separated the part due to the gravity anomaly as defined

above, we are faced with the problem of converting this velocity

variations data into either a special additional mass

distribution (+ or -) or a special variation of potential

distribution on, say, the earth's surface. The first step in

this conversion process involves obtaining formulae that give the

relative velocity components in terms of the anomalous potential

at the satellite positions. The differential equations relating

satellite position and velocity and the anomalous potential at

the satellite position are easily obtained from the general

equations of motion. We have dealt with the problem of solving

these equations by obtaining linearized equations for the

perturbed satellite co-ordinates, which can then be easily

integrated by numerical techniques.

Implicit in this integration is of course a particular form

for the anomalous potential at the satellite position. A simple

formulation, and one that can be applied to the analysis of

actual data and to simulation studies, is that of the potential

due to a grid of surface patches on which either the difference

in the potential between the actual case and the standard model is

known or an equivalent variation of surface mass density is

known. The potential outside the surface, at the satellite

position for example- due to such a distribution is readily

obtained from potential theory.



Page 5
J
a

Having obtained the perturbed relative velocity as a linear

function of surface anomaly strengths, we are then in a position

to utilize least-squares fitting to obtain the best estimate of

surface strength values (for the particular model) relative to

the data, which can be either actual data or data simulated by an

independent method, such as integrating the full equations of

motion for the satellites in the presence of and in the absence

of gravitational anomalies.

In outline then, this is the program we have followed, and

we have been able to demonstrate that our method of obtaining

perturbed relative velocity works well in the sense that, not

only does the velocity signature for a given anomaly distribution

obtained by this method closely correspond to that obtained by

the more lengthy simulation procedure, such as integrating the

full equations, but the anomaly distribution obtained by the

least-squares inversion technique also agrees well with the input

simulation distribution for a linear array of surface elements

oriented along the satellite path. As expected, the resolving

power is found to be weaker for the case of a linear array of

elements oriented perpendicular to the satellite path or at

various distances below the earth's surface. This ability to

recover the simulation mass anomaly distribution is the crucial

test, and we have documented the success of the method in a

number of different cases. In addition, we propose further

studies that could easily be undertaken utilizing the software we

have developed. Both the method used and the results obtained

are explained in detail in the following sections.
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2. SATELLITE ALTITUDE AND SEPARATION STUDY

Before proceeding to demonstrate the recoverability of an

anomolous mass distribution (or gravitational potential

distribution) by least-squares fitting, we addressed the question

of optimal altitude and satellite separation from the standpoint

of signal strength and observed wavelength of the perturbed 	 l

relative velocity waveform caused by a single one degree by one

degree surface mass anomaly. We have simulated a number of

cases, varying satellite height and separation as well as the

distance of the anomaly from the path of the satellite projected

onto the earth's surface. This was done only for the standard

low-low configuration with an eccentricity of 0.001 and with

altitudes ranging from 175 km to 300 km, angular separations

ranging from two to eiqht degrees, and distances of the anomaly

from the projected satellite path of zero to 40 degrees (one

degree corresponds to approximately 110 km). To be more

specific, the satellite heights considered were 175, 200, 250,

and 300 km, while the separation choices were two, four, five,

six, and eight degrees. The angular separation of the anomalies

from the projected satellite path was taken in ten degree

increments.

Figures 1-13 display the perturbed relative velocity

fr. "}R	 signatures for a number of these simulations. The relative

velocity is plotted in mm/sec versus the time ir , seconds. Both
r

the initial satellite positions and the longtitude of the anomaly

are held constant. throughout. The orbit is equatorial for

simplicity of interpretation. The surface gravitational
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anomalies are all of the same dimensions (l°	 x 1°) and strength

as wells	 200w mgals. Since the effect is very nearly linear,

one can obtain the relative velocity amplitude for any arbitrary

anomaly strength (of the same surface area) by changing the

velocity and anomaly strengths in the same ratio.

The pattern that emerges from studying these relative

velocity signatures is quite clear and has an obvious physical

explanation. First let us consider the sequence of Figures 1,

2(a), 3(a), and 4, corresponding to an altitude of 175 km and

separations of two, four, six, and eight degrees, respectively.

The anomaly is fixed directly on the projected satellite path for

this sequence. As the separation between the satellites

increases, we note an increase in the amplitude of the relative

velocity waveform. The waveform takes its particular shape due

to the fact that first one, then the other satellite undergoes an

acceleration due to the anomaly, which exerts a significantly

different effect on the satellite behavior only when the

difference in satellite-to-anomaly distance becomes significant.

When the satellite separation is small, the second satellite to

"see" the anomaly begins to do so before the first one through

has reached its maximum perturbed velocity. This diminishes the

maximum relative perturbed velocity observed. Thus we see a

steady increase in signal strength in going from to two to six

degrees, which begins to level off the.Teafter as the perturbed

relative velocity begins to approach the perturbed velocity of

the individual satellite most affected by the gravitational

anomaly. In Figure 4, with a separation of eight degrees, we see

A il 1n <Wr Vt1kX""— .
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that we are approaching the point where each satellite sees the

anomaly separately. This is evidenced by the shoulder in the

curve between the two extremes in perturbed relative velocity.

The same general behavior is observed in the corresponding

200km altitude sequence! of Figures 5, 6(a), 7(a), and 8 and in

the similar sequences for 250 km and 300 km altitudes. These

results indicate that for detecting gravitational anomalies with

dimensions of around 100 km by 100 km a satellite separation of

some five to six degrees should be optimum for the low-low con-

fiquration. Since the Rolf (4) approximations used to relate

perturbed relative line-of-sight velocity to anomalous

gravitational potential become less accurate as the separation

increases, this points to the necessity of obtaining a more

general; ta pA, and economical way of obtaining this relationship,

which is ti-,s main subject this report.

Anothei obvious and expected phenomenon one can note in

these figures is a decrease in signal strength as the satellite

height is increased (for a given satellite separation). Since

all of the peak-to-peak signals are tabulated below we shall not

discuss this effect further.

When we study the changing behavior of the perturbed

relative velocity signature for fixed height and separation and

variable anomaly position we notice that the shape of the

waveform changes and that there is an overall downward shift in

the data , so that for anomaly-to-path distances of twenty

degrees or more the perturbed relative velocity is negative from
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the beginning. We ascribe this to the geometry of the

configuration. While the "leading" satellite is still gi%en a

greater perturbed velocity than the "trailing" one in the first

half of the path, the component of perturbed velocity along the

line-of-sight, i.e., the original direction of motion, is greater

for the trailing satellite. This is just a consequence of our

taking the initial "unperturbed" position so close (in terms of

differential satellite distances) to the off-line anomaly.

The peak-to-peak signal itrength is seen to fall drastically

as the distance from the projected satellite path is increased.

All of the results are tabulated below (see Table 1) in terms of

peak-to-peak perturbed relative velocity signal strength per mgal

of anomaly strength. It is hoped that in future

satellite-to-satellite Doppler tracking experiments noise levels

in the perturbed relative velocity measurements can be kept below

10- b m/sec or 10- 7 m/sec. Since the last column in the table

gives the peak-to-peak signal strength in units of 10 -6 m/sec due

to a one degree by one degree surface anomaly of 1 mgal strength,

it can be used as a measure of whether such an anomaly would

cause a signal of sufficient magnitude to be detectable for the

various altitudes and separations in the low-low configuration.

Clearly a 1 mgal directly on the projected satellite path will

give a signal well above the 10 -6 m/sec noise level in all cases.

The peak-to-peak signal falls off by 50 percent in going from 175

km height to 300 km height for satellite separation of 8 degrees.

Since the 300 km signal should still be more than adequate for

anomaly recovery and since the atmospheric drag would be much
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smaller at this altitude, this factor would seem to make the

higher altitude attractive for an actual experiment.

As the anomaly is moved away from the projected satellite

path it begins to make a decided difference whether or not the

more stringent condition on the noise (noise < 10
-7
 m/sec) can be

met. The numbers in the table speak for themselves. As we show

in another section dealing with recoverability of anomalies

aligned perpendicular to the projected orbital path, there is

another problem associated with detecting off-line anomalies.

But this is basically a resolution problem due to the similarity

of perturbed velocity signatures between two anomalies that are

close to each other and both at some distance from the projected

orbital path.

One other feature of the simulated signal strength data is

worth pointing out. As the distance of the anomaly from the

projected satellite path increases, the effect of varying the

satellite height becomes less important. This is simply because

the distance from the anomaly to the projected satellite path

becomes much larger than the altitude and becomes the dominant

contribution to the satellite-to-anomaly distance which

determines the velocity response.



altitude separation anom. location peak-to-peak
(km) (degrees) (degrees) signal	 (um sea-1/mgal)

175 2 0 11.3

175 4 0 15.9
175 4 10 0.6
175 4 20 0.1

175 6 0 17.5
175 6 10 0.9
175 6 20 0.2

175 8 0 17.8

200 2 0 9.0

200 4 0 13.2
200 4 10 0.6
200 4 20 0.1

200 6 0 14.8
200 6 10 0.9
200 6 20 0.2

200 8 0 15.2

250 2 0 5.9

250 5 0 10.3

250 6 0 11.1
250 6 10 0.8
250 6 20 0.2

300 2 0 4.1

300 5 0 7.6
300 5 10 0.7
300 5 20 0.2

300 6 0 8.1
300 6 10 0.8
300 6 20 0.2

300 8 0 8.9

Page 11

Table 1

Velocity Signal Strengths for

Simulated Cases
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3. THE RECOVERY OF GRAVITATIONAL ANOMAiIES FROM RELATIVE

VELOCITY DATA

Although the perturbed velocity due a given surface

distribution of gravitational anomalies can be obtained by

numerically integrating the equations of motion for a satellite

in the resultant gravitational field, as it is done in the Apollo

Soyuz Test Project (ASTP) integration program, which was

developed for this purpose at SAO, it is desirable to obtain a

more economical method since in feasibility/sensitivity studies

one may wish to study numerous different cases, varying

parameters such as orbital height, satellite separation, and

orbital configuration, as well as the anomaly distributions. In

the original low-low scheme proposal by Wolf (4), energy conser-

vation is utilized to obtain a linear relation between the perturbed

along-the-track velocity and the anomalous potential at the

satellite position. This is done as follows.

Since gravity is a conservative force (and this ir.ciudes the

force due to any surface anomalies) we have

^VI( r,e)+U(r)+T(r,e) -^V2(r',e')+U(r')+T(r',e-')	 (1)

where V is the satellite velocity, U the centraIr potential due to

the spherically symmetric part of the earth's mass distribution,

and T(r, 9) is the anomalous gravitational potential, which in

general includes all higher order harmonics of the earth's
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potential, but which for the purposes of the present discussion

we limit to the potential due to some surface distribution of

gravitational anomalies. The primed and unprimed variables refer

to any two different points along the satellite orbit. The angle

6 determines the position of the satellite along the orbital

path. For a nearly circular orbit r' a re so that the the

central potential terms are nearly equal at the two points.

Since T is assumed to be much smaller than U, the components

of the perturbation in velocity (relative to the case when T = 0)

are much smaller then the unperturbed velocity V . Thus

2	 -► -+	 2	 2	 2	 2	 2
V - ( V+V l+Vu) -Vp +2VOV'. +V " +Vl

-V2 +2V
0 

Vol

where v„ and v l are the components of the perturbed velocity

along the unperturbed path and perpendicular to the unperturbed

path, respectively. The quadratic terms are negligible in

comparison with the linear term in v ,, . Combining equations (1)

and (2) gives the simple linear relation

V..	 (6 1 )-V.. (62 )=(1(62)-T(61)) /2Vo 	 (3)

(2)
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In the case where there are two satellites soving in the

same unperturbed orbit but with angular separation ne the

expression

v„(0 +a©)-v„(e)-(T(e)-T(e +ee))/2V O	(4)

obviously applies from the previous aralysis. If the angular

separation is small, then the relative line-of-sight velocity,

i.e. the velocity determined by a Doppler measurement between

the two satellites, is approximately equal to this difference in

the along-the-track velocity. This is the beauty of the low-low

scheme: by the use of energy conservation it turns the problem

of obtaining satellite height anomalous potential values from

Doppler velocity data into a geometrical, problem. It is

important to note the limitations of this scheme, however. It is

strictly applicable only to circular unperturbed orbits with

small angular separation. Since there are other considerations

that recommend an angular spacing of some 5 degrees, as we

demonstrate later on, it is important to investigate what kind of

errors are introduced by equivalencing the relative velocity and

the difference in along-the-track velocity.

In the general case of two arbitrary satellite orbits

another approach is necessary. We are interested in solving this

problem because a scheme that can deal with arbitrary satellite

separation is needed for the low-low case and because one of the

 
Ilk	 W-

M.
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aims of this sLudy is to investigate an alternative orbital

configuration which samples both vertical and horizontal

components of the gradient of the anomalous potential, utilising

orbits with non-negligible eccentricity.

The ASTP ., ►tegrator ( or any program that integrates the

complete equations of motions) must solve six differential

equations 0 position co-ordinates, 3 velocity co-ordinates), and

the velocity equations involve non-linear functions of the

spatial co-ordinates through the gradients of U and T as defined

above. Under the assumption that the unperturbed orbits of the

two satellites are co -planar; so that perturbations that are

perpendicular to the orbital plane are irrelevant to the relative

line-of-sight velocity to first order, we can reduce the problem

to the solution of four differential equations in perturbed

variables, all of which are linear in theme variables. This is

done in the following way.

First we write down the Lagrangian for a unit mass satellite

moving in a potential that consists of the two already familiar

parts U and Ts

L-^(r2 +r 262)-U(r)-T(r,e)

Here r and a are obvious polar c p-ordinates of the satellite (e

• f + W , where f is the true anomaly and W the argument of

perigee). As mentioned above, the other angular co-ordinate is

(5)

4
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irrelevant to the discussion. The equations of motion are then

rn rA`- fir» _ ar
	

(6)

M=- aT
30

where M n r 2 4 is the angular momentum. The zeroth order

unperturbed equations are

r0	 r0 © 0	 or r=ro
a	 _ aUl	

(7)

M0 = 0

If we eliminate the unperturbed part of the equations of

motion and linearize the resulting equations we obtain

6r•_ ar+M 6M+ ( GE`- -3 *0 2 ) 6r
r 	 ro	

(8)
6M	 _ aT

36

where 6r and 6M	 2 rpe6er	 + r; de are perturbations in the

radial co-ordinate and angular momentum, respectively.

We thus have the system of four linear differential

equations to solve:

d (8 r ) n 7 + 2Mo 6M -	 ( 1 + 3e cosf)dt	 ar	 ro 3 	 r03

d ( dr)	 dr
(9)

(6M)	
ao

Ut (6e) _ (6M - 2r0 006r)/roe
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where G is the gravitational constant, Me the mass of the earth,

e is the orbital eccentricity and f the true anomaly.

We utilize a Runge-Kutta integration package RKP45 to solve

these equations. To integrate these equations we must assume a

particular form for the anomalous potential at the satellite

posit!.ne. First let us consider the potential due to a

distribution of anomalous surface mass density. Since we must

have a potential that is linear in some variable parameters in

order to carry out our least-squares fitting program, we use the

approximation in which the surface mass density is constant over

a given surface area, or in which we approximate a continuous

distribution by a discrete one, breaking up the earth's surface

into small surface areas and assigning the average value of the

surface mass density over each small surface to that entire

subsurface. The gravitational potential due to such a surface

mass density is given by direct integration, using the Newtonian

formula for the potential due to an arbitrary mass distribution.

T(r) = GR2

	 A'' d n'	 (10)

where d (r — R ) a
	

is the mass density, with R the radius of

the earth and a the surface mass density. The integration is

over the solid angle that defines the subsurface. The vector P

locates the space point (satellite position in our application)

at which the potential is evaluated relative to a point on the

ro

9
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.:

subsurface of integration. Figure 14 shows the geometrical

relationship between various position vectors and co-ordinates.

In equation ( 10) we have:

	

P ' r2 + R2 -2rR cos y	 0	 (11)

The derivatives are then

a1 - •GR2 fjr-R cosy)o(.)',o')d^'
ar	 J	 ;3	 (12)

ae GR2J aR acoesy a(.' o')dn'	 (13)

Since we wish to work in an inertial co-ordinate system, we

need to express all quantities in terms of inertial co-ordinates.

In particular we must express the cosine of the angle between R

and r in terms of these co-ordinates. The desired expression is

obtained directly by use of rotation matrices to be

cony = siny' sin i sine+ coWcos(a'-'c )cose
+toss"sin( a' -Q)cosi sine	 (14)

where the relevant orbital parameters are defined as in Figure

15, and the inertial longitudinal angle locating the subsurface

varies linearly in time as the earth rotates.

When we take the space point defined by r to be the

satellite position, then the only quantities in the expression

for the potential that vary are r, 9, and a'. Since, by

assumption, the perturbing potential makes only small variations

in the satellite orbit we can take the time variation in r and e

to be given directly by the unperturbed solution to Kepler's

equation. The variation in a' depends only on the rotational

velocity of the earth. The remaining problem is then to carry

out the surface integration. For obtaining the design matrix we

have just taken the value of the integrand at the center of the

surface times the surface area. This amounts to a point mass

approximation which should be adequate for initial studies of the
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sort we are undertaking. To generate the simulated data we broke

the surface into a 3X3 grid of smaller surfaces and took the

force contribution to the complete equations of motion from each

surface to be the sum of the gradients of the potentials due to

these subsurfaces.

The relationship between the surface mass density and the

corresponding gravitational anomaly (anomalous gravitational

acceleration) is easily obtained from Laplace's equation for the

gravitational field and the use of the divergence theorem. This

relationship is

Ag= -2n Go	 (15)

where v is the equivalent surface density (gram/m 2 ) and G is the

gravitational constant. This expression allows us to use

gravitational anomalies in mgals as input into the simulation

runs and to obtain these quantities in our least-squares fitting.

`

	

	 An alternative procedure would be to obtain the

gravitational potential at the satellite position due to a

surface distribution of potential. To do this the Laplace

integral is utilized, which gives

T(r) = jr_ R )	 T a'-	 dv
Imo` ' 	4 n	 c	 (16)

^T = 2rR	 Td..' - 3R(r - ' )	 (r-F, cos^Td• . '	 (11)
er 4'— -,_
	 R4r	 _^—

aT = 3R(r - R)j
P
rR 	cosy Td:t'	 (18)

"09	 4n	 5	 _e

.y w'kr..+n ^t:.3^ir.:a a
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The variables defined in these expressions are the same as those	 1

n

used in the previous expression for the potential due to a

surface mass distribution.

We should mention that an additional level of complexity can

be added by letting the anomalous masses be distributed beneath

the earth ' s surface as well as on the surface. we have studied

only a few such cases, and this is another area that would seem

to deserve further study.

To obtain the complete design matrix that we require for our

least-squares fitting procedure we must obtain the perturbed

relative velocity due to the perturbed quantities obtained by the

Runge-Kutta integration routine. The relative line-of-sight

velocity is defined by

v12= (r1-r2)•(^; v2)

'rl"r2

where the subscripts refer to the two different satellites.

Figure 16 defines the quantities graphically.

Then the perturbed relative velocity 6V 12 is given by

{ 1zV x r lL_
l(r l -r2 cose 12 +r2 (E 1 -6 2 )sine 12)

+6r1(rl -r2cose12)	
(20)

+(3E1. 6A 2)rlr2sin612

+ Z r2 (r2-rlcos612+r1(61-62)sine12)

r2(r2-rlcose12)

+(ee1-6e2){sinel2(rir2+r 2ri )+cosE12rlr2(81-e2) }J

+v1_-er (r cosh	
-

r 1+6r (r COSF 	 r )G-	 1	 2	 12	 1	 2	 1	 122

-rlr`sine12(6e1-6a2)i

(19)
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where

r1? _ (r1 2 + r2 2 -2r1r2COS812) 112 = i r l - r:

4. DESCRIPTION OF THE SOFTWARE

We have developed a software package suitable for use in

sensitivity/feasibility studies and for determining (in the

least-squares sense) surface anomaly distributions from actual

satellite-to-satellite Doppler tracking data.

In summary, the components of this software system are:

I) The ASTP integrator. This package of routines integrates the

equations of motion for a satellite (or two satellites

simultaneously) with given initial position and velocity vectors

or, equivalently, initial Kepler orbital elements. The force

acting on the satellite consists of numerous termrs in addition to

the central force of the spherically symmetric part of the

earth's gravitational field. These terms, which include higher

order harmonics of the terrestrial field, can be activated or not

as desired. Most importantly for the present applications, the

force due to a surface gravitational anomaly distribution can be

included.

II) The "standard" low-low configuration model anomaly package.

This model uses conservation of energy to obtain the dominant

term in the perturbation of the relative line-of-sight velocity

between two satellites in a given orbit due to a given surface

anomaly in the gravitational field.
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III) The general model anomaly package. This model obtains the

perturbation in relative velocity by integrating the linearized

differential equations for perturbations to the velocity of each

satellite due to a given surface anomaly. A Runge-Rutta routine

(RKF+5) is used to carry out this integration (5).

IV) The Singular Value Decomposition (SVD) package. Taking as

input the relative velocity matrix generated by I or II for a

given sample of data points and set of surface anomalies, this

set of routines obtains the singular value decompositon of the

design matrix as well as the two matrices U and V (defined below)

which transform the design matrix into the diagonal form. These

three output matrices are then used to obtain least-squares fits

corresponding to the particular model and orbit of the original

design matrix for actual or simulated Doppler data.

Schematical-y these components interface in the way shown in

Figure 17. The upper part of the diagram shows the method used

to obtain simulated Doppler data. (A) The ASTP integration

package is first used to obtain the relative velocity of the two

satellites along a given path at selected times, or sample

points, for given initial conditions and with no gravitational

anomalies. For example, in the standard low-low configuration

the two satellites might be chosen to have the same low-altitude

(say 200 km) nearly circular orbit except for a small (say 5

degree) separation due to a difference in perigee. The relative
O

velocities (6 v j) for the zero-anomaly case, which are due

strictly to orbital effects and vanish in the limit of zero

eccentricity, are stored on a disk file for later use. (B) Now
t
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li
the ASTP integrator is run again with the same initial satellite

positions and velocities but with a given surface anomaly

distribution on the earth ( egi). The relative velocity values

( svj ) are obtained for the same times as in step A. The values

obtained in step A are then retrieved from the disk files on which

they were stored and are then subtracted from the new relative

velocity values. The resulting set of values is then the

perturbed relative velocity set (6 v! ), corresponding to the

anomaly distribution ( eg i). This is taken to be the simulated

data. The step B can be repeated for as many different anomaly

distributions as desired for a given orbital path without

repeating step A. In fact, since the effect of the surface

anomalies is linear, simulated data from any linear combination

of anomaly distributions can be obtained directly from the

corresponding linear combination of ( 6 v'. ) without re-running

the ASTP integrator, a fact which can be utilized to reduce

computer time.

The lower part of the diagram schematically illustrates the

method used to obtain the design matrix and its singular value

decomposition E, which is then utilized in the least-squares

fitting. The following section describes this part of the

process in more detail.
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5. THE LEAST-SQUARES FITTING

The general method of least-squares fitting of data to a

particular model assumes that one can approximate the actual

measured values of the quantity of interest by a linear

combination of basis functions (this is what we mean by the

model), which may be nonlinear functions of the independent

variable. For our purposes we may take the independent variable

to be the time of observation or, equivalently, an angular

variable such as the true anomaly. In the present instance the

appropriate basis functions cannot be written, down in closed form

since they are obtained only through the integration of the

differential equations (9). However, since our equations are

linear, we know that these basis functions exist. Note that the

equations must be linear in all the perturbed variables and in

the anomalous potential (or its derivatives) for the method to be

applicable. Each basis function corresponds to a different

surface element, and the value of each basis function at a given

time is determined strictly by the geometry of the particular

orbit in question.

It is useful to introduce the concept of the design matrix

in discussing the method. This is the rectangular matrix A in

which each column corresponds to a definite basis function

evaluated at the different observation times. In our case the

design matrix consists of perturbed relative velocity values due

to unit strength anomalies on the different surface elements,

i.e.

AiJ 
0 av i (ti ) = Wij
	 (21)
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where av,(t j ) is the perturbed relative velocity due to the ith

surface element at time tj. Then the least-squares program is to

minimize the sum of the squares of the residuals, where the ith

residual is defined by

rj - A ii C i -ay'(ti )	 (22)

by choosing the best set of coefficients ( ) .

To accomplish this we have utilized a singular value de-

composition routine SVD (5). The singular value decomposition

method allows us to transform the design matrix into a diagonal

matrix E, the diagonal elements of which are known as the

singular values of A. In this form the least-squares solution is

trivial, assuming the singular values are not too small. Then

this solution, which corresponds to a transformed set of basis

functions, can be transformed into the solution corresponding to

the initial basis functions. A powerful feature of this method

is that it indicates if any of the basis functions are (almost)

linearly dependent and allows one to eliminate meaningless

solutions by setting the coefficients of the transformed (into

the "singular" system) basis functions equal to zero if the

corresponding singular value is less than the cutoff value. In

practice this cutoff must be chosen in accordance with the

accuracy of the data measurements or machine accuracy. Such a

cutoff turned out to be necessary when a linear array of surface
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elements oriented perpendicular to the orbital path was studied,

whether it was on the earth's surface or in the vertical

direction.

Another powerful feature of this method is that the singular

value decomposition E and the two orthogonal matrices U and V

that transform A into E by

A = UEVT

	
(23)

need only be computed once for a given orbital path and surface

element array, i.e., for a given design matrix. The E , U, and V

matrices can then rie used over and over to obtain new

least-squares fits to any number of simulated or actual data sets

corresponding to the same orbital path.

6. THE ECCENTRIC SATELLITE PAIR SCHEME (Colombo Method)

The eccentric scheme, originally proposed by Dr. Giuseppe

Colombo of SAO, appears to have a number of virtues that make it

an attractive alternative to the standard low-low configuration.

One of the primary goals of this study is to examine this scheme

in more detail and obtain a better, quantitative evaluation of

its characteristics, both in terms of retrieval of gravitational

anomalies and economy.

.1 a 4s .^.a.: ^ihi dl> 1sa"a a

k -
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LL'T .

The scheme is based on two satellites with very low

area-to-mass ratios (or, alternatively, a drag free system) in

near-earth orbits. The slightly eccentric orbits are symmetric

with respect to the earth ' s centerf the orbital elements of the

two satellites are as follows, and their relative configuration

is depicted in Figure 18.

Some numerical examples of the proposed configuration are

given below, together with value s for the true anomaly e* when

the two satellites are at the same altitude. in the examples, we

have assumed that the Shuttle is the launching platform and have

chosen three injection altitudes (220, 300, and 360 km). The

perigee height has been kept constant at 160 km; the optimum

perigee height will be the height at which the effect of gravity

is at a minimum. The optimum apogee height will be based on thQ

length of the system's lifetime.
Example _1. The Shuttle is in a circular orbit at 220-km height; the two

satel teTf— s Va ve the same semimajor axis. with pe,Igee at 160 km and apogee at
280 km. We will then have

a - 6598 km	 e - 0.009094	 a^ n :90!52

Example 2. The Shuttle is in a circular orbit at 300-km height; the two
satel elTi s have the same semimajor axis. with perigee at 160 km and apogee at
440 km. We have

a - 6678 km	 e - 0.02096	 a^ t91'20

Example 3. The Shuttle is in a circular orbit at 360-km height; the two
satel eT^E s Piave the same semimejor .-is. with perigee at 160 km and apogee at
S60 km. We have

a n 6738 kw	 e - 0.02968	 a^ n :91!70

From Figure 18 the fundamental property of the Colombo

scheme is evident: The line of sight between the satellites

takes on several geometric relationships with respect to specific

points on the earth's surface. When, for instance, one satellite

is at perigee, the other is at the apogee, and the line of sight

between the two is perpendicular to the earth's surface (radial
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direction). When the true anomaly of one of the satellites is

8 • , the line of sight is horizontal. Therefore, the scheme is

capable of measuring the radial and horizontal components of the

velocity differential twice per orbit. Since the nodal line and

the apsidal line process, this sampling will cover the entire

earth in a latitude span corresponding to twice the inclination.

The inclination should not be too close to critical if we want

the apsidal line to precess fast enough to give the required

coverage.

7. ATMOSPHERIC DRAG AND THE COLOMBO SCHEME

A drag compensation system to eliminate the effects of drag

on the relative velocity between the two spacecraft would

certainly be the most effective way of eliminating noise due to

variations in atmospheric density. However, the inclusion of

such a system does increase the total cost of the experiment by a

considerable amount. Thus an orbital configuration that

maintains the sensitivity of the system to gravitational

anomalies but decreases the fuel expenditure of the drag

compensation system is highly desirable. In another section of

this report we demonstrate that the Colombo scheme is as

effective at detecting gravitational anomalies as the standard

low-low scheme. We now examine it from the standpoint of fuel	 i

economy assuming a drag compensation system to be required.
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At lower altitudes, the sensitivity of the system to gravity

anomalies is better, but more fuel is consumed in order to

compensate for atmospheric drag. A trade- off must be made

between sensitivity and lifetime in chosing the orbit for the

spacecraft. in the Colombo scheme, the spacecraft would be in

eccentric orbits in order to combine the advantages of the

low-low and the high - low configurations. A computer program has

been written for integrating the drag on the satellite during one

orbit in order to evaluate the orbital lifetime for various

altitudes and eccentricities.

The equation for an elliptical orbit is

r a a 1-e'

i- + ecose

where r is the distance from the center of the earth, a is the

angular position measured from perigee, a is the semi-major axis,

and a is the orbital eccentricity. For small eccentricity we

can write approximately

r '1 	(25)

The velocity v is given by

(24)

v-GM^r - /a	 (26)



The atmospheric density P can be represented approxi

P ,
	 e-(h-ho)/c

PO

where ao is the density at h n ho and c is the scale

drag force F on the spacecraft is

F=A,)v1

where A is the drag cross section. The rate of fuel consumption

necessary to counteract the drag force is given by

F=mV= dt
	

(29)

where V is the exhaust velocity sj,d m is the rate of fuel

consumption. The total mass m of the fuel used is

M fdm  = V fidt	 (30)

J', 	 order to do the integration in the variable a instead of t,

W6
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we can make the transformation

dx • rde . vdt	 (31)

or

dt = rde / v	 (32,

This approximation is valid for low eccentricity orbits

where v is nearly perpendicular to r. With this transformation

the integral becomes

m = V frrde
J v

Substituting F o Apv 2	 we have

FR = V fApvrde
	

(34)

This expressing has been used to integrate the drag around one
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orbit (e - Or 20. The program actually computes

m V/A - fp v rde	 (35)

which has the units of dyne-sec/cmi in the cgs system.

A set of runs has been done with the following parameters=

GM P- 3.986013 X 10 40 (cgs), h o - 200 km., P. - 2.54 X 10 -13

g/cm 3 , c - 30 km. The table below lists the drag for various

orbits.

Table IT

Values of Drag For Various Orbits

Peri ee a Apogee Drag
(kmy (km) (km) (dyne-cm/sect)
200 200 200 917.20
180 180 180 1589.27
180 200 220 910.55
180 220 260 628.76
180 240 300 492.53
180 260 340 415.78
180 280 380 366.60
180 300 420 331.94

For the same semi-major axis, the drag increases with

eccentricity. For example if the altitude decreases by one scale

height, the drag increases by a factor of e - 2.718. If the

altitude increases by one scale height, the drag decreases by a

factor 1/e - . 3676.

These results show that the Colombo scheme results in large

savings compared to the standard low-low scheme, represented by

the first two entries in the table. The question of overall
{ _c



Page 33

sensitivity is not so easy tc answer without more extensive

study. It is quite clear from the anomaly recovery analysis we

have made that for a given value of the perigee the Colombo

scheme compares favorably with the standard low-low configuration

as long as it is in the high-low portion of its operation. In

comparing the circular 200 km low-low orbit (first entry in the

table) with the a = 260 km, apogee-340 km Colombo configuration

we find that the fuel expenditure for the circular orbit is

almost 100 percent greater. The overall sensitivity of the

Colombo case should be at least as good for a major part of the

orbit. By referring back to the low-low perturbed relative

velocity signatures of a single anomaly for 200 km and 250 km

given in Figures 5, 6, 7, 8, 9, and 10 we can get an idea of how

sensitivity compares during the low-low portion of the Colombo

configuration. While the peak-to-peak signal strength may drop

off as much as 50 percent in the Colombo configuration depending

on the angular separation between the satellites it should be

well above the threshold of detectability for anomalies of the

order of P mgal, of dimension one square degree. Thus the Colombo

scheme would seem to be quite competitive in terms of

sensitivity, while offering substantial savings if a drag

compensation system is utilized.

y
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S. LONGITUDINAL LINEAR ARRAYS OF GRAVITATIONAL ANOMALIES

The critical test of the entire software package we have

developed is whether the design matrix obtained by the use of the

linearized equations for the perturbed velocity and space

co-ordinates can, when coupled to the singular value

decomposition routines, be used to recover a surface anomaly

distribution by least-squares fitting to the corresponding

relative velocity data generated in an independent simulation.

In other words, can the system take data such as that shown in

Figures 1-13 and obtain a good reconstruction of the surface

anomaly distribution that caused the particular velocity

signature observed? We have examined this problem in detail for

a number of linear arrays of one degree by one degree surface

anomalies for the standard low-low configuration and for the

Colombo configuration in the high-low portion of the orbit.

Figures 19-22 show the results of a series of simulation

experiments in recovering the input surface anomalies by use of

the least-squares fitting procedure outlined above.

Figures 19 and 20 display results of this procedure for a

number of linear distributions of surface anomalies lying

directly beneath the paths of two satellites in the low-low

configuration. The design matrix is obtained for a ten-element

array, and the anomaly strengths for each of these surface

elements are subsequently obtained through the least-squares

fitting procedure for each set of simulated data, the data having

been simulated by the ASTP integration routine as outlined in the

section devoted to software. The perturbed relative velocity

data are displayed in Figures 19(a)-19(e), and a comparison
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between input distribution and recovered distribution is shown

for each case in Figure 20, where the input anomaly strength has

been normalized to 10mgal.

The satellites are at an altitude of 200 km with an angular

separation of five degrees. The orbital parameters common to

both satellites are an eccentricity of 0.001 and an inclination

of 0.00001 0 ,so that the orbits are nearly equatorial. These

parameters were chosen merely for convenience, since the program

can handle arbitrary orbits.

The per'6urbed relative velocity is shown as function of time

in Figures 19(a) through 19(e) in units of mm/sec, where the

strength of a given one-degree by one-degree anomaly is 20w mgal.

Figure 19(a) shows the signature of a single such anomaly and is

very similar to the one shown in Figure 6(a). Figure 20(a) shows

that, except for a slight underestimation of the peak anomaly

strength and some side structure, the least-squares determined

anomaly strengths agree well with the input values. The

underestimation as well as the side structure is probably a

consequence of our taking a point mass approximation in obtaining

the design matrix while dividing the surface element into 9

subelements in the data simulation process. In any case the

method has clearly determined where the central cause of the

lsturbance lies.

Figure 19(b) shows the signature of two such anomalies

Pparated by one element with zero anomaly strength. An

)proximate doubling of the amplitude and a broadening of the
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peaks is observed, but it is far from obvious to the eye that

there is a gap between the two anomalies. However, the fitting

routine does see this difference, as the results plotted in

Figure 20 demonstrate. The dual anomaly is clearly seen in plot

20(b) with excellent resolution. The same can be said for the

next case, a dual anomaly separated by two zero-anomaly surface

elements. The relative velocity signature for this case is shown

in Figure 19(c) and the corresponding fitting results in Figure

20(c).

The rest of the plots in Figure 20 are further evidence that

the basic software is working well in terms of discrimination,

although there are some errors. Figure 19(e) shows the velocity

signature of a gravitational dipole, in which there are two

anomalies of opposite sign and equal strength separated by a

single zero-anomaly element. Figure 20(e) shows this

distribution to have been recovered quite well. The widely

separated dual anomaly (eight degrees between non-zero anomaly

elements) whose signature in Figure 19(d) clearly shows the two

anomalies as separate events showed a little more noise in the

fitted anomaly strengths. In restrospect it seems likely that

the oscillations about zero seen in the fitted values of Figure

20(d) might have been reduced had we applied a more stringent

cutoff on olir allowed singular values. But prior to our

experience with the more clearly linearly dependent results of

the transverse surface and vertical linear arrays we had not been

forced to examine this question since the fits for the
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Figures 21(a)-21(e) show the perturbed velocity signatures

for a Colombo configuration during the portion of the orbits for

which the radial separation is at a maximum. The surface anomaly

arrays are the same as those considered in the low-low

configuration, the data for which are displayed in Figure 19, and

they follow the same order in both sequences. It is immediately

apparent that the velocity signatures are quite different in the

two cases. This is largely due to the increased importance of

the radial velocity components in the Colombo case.

For our parameters the maximum radial separation is around

140 km. There is essentially no angular separation in this case.

The lower satellite is at an altitude of around 175 km. We

denote this the high-low case in the figures, but it should not

be confused with the standard high-low case. Here we refer only

to the high-low portion of the Colombo configuration orbit. The

plots of Figure 22 show that, even though the velocity signatures

are markedly different from those seen in the low-low case, the

ability of the method to obtain least-squares fitted values that

agree closely with the input values is nearly the same, with the

low-low configuration holding a slight edge. Whether this slight

advantage would hold up if one of the basis functions had been

eliminated remains to be seen. Time did not permit our running

the various cases again with the cutoff criterion found to be

optimum in the transverse array cases. The fitted signatures,

i.e. the signatures obtained by using the fitted anomaly values,

are virtually indistinguishable from the simulated signatures in

both low-low and high-low cases. 	 p
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9. TRANSVERSE AND VERTICAL LINEAR ARRAY RECOVERY

Time did not permit an extensive investigation of anomaly

recovery for cases where the surface anomalies are not arrayed

along the projected satellite path. we do have some preliminary

results to report, however, which illustrate both the added

difficulties in unambiguously resolving transversely aligned

anomalies and some features of the SVD routines that are useful

in such cases.

Figure 23 shows the results for a number of cases of surface

anomaly elements aligned perpendicular to the projected satellite

path on t'ie earth's a irface for the same low-low orbit considered

in the analysis of longitudinal linear arrays (Figures 19 and

20). This time the design matrix is determined for ten one

degree by one degree surface anomalies at a single longitude.

The display of simulated perturbed relative velocity data has

been omitted for the standard low-low cases since they are

qualitatively similar to the plots previously displayed for

off-line anomalies. The comparisons of input anomaly

distribution with least-squares fitted anomaly distribution

follow the same format that was used in the longitudinal linear

array studies, except that in some of the input/output

comparisonsa there is more than one set of fitted anomaly values.

These different sets of recovered anomaly distributions

correspond to different choices of the singular value cutoff of

the design matrix. Since the fits were judged to be sufficiently

good to demonstrate the success of the fitting method in the

previously analyzed cases of linear arrays aligned parallel to
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the projected orbital path, and since the ratio of largest to

smallest singular value was in those cases less than 10 3 , no

cutoff was made in either the standard low-low or Colombo

configuration examples previously analyzed. in the present case

of a transverse array, however, it was immediately apparent that

a cutoff would be necessary to eliminate unreasonably large

fitted coefficients for what were essentially null vectors in the

space corresponding to the singular value decomposition. This

was apparent both from the very poor success in recovering the

Input anomaly distribution when no cutoff was made and from the

large ratio of largest to smallest singular value, which was in

this case greater than 10 8 . The choice of singular value cutoff

beyond which the singular basis functions are to be considered

null depends on the accuracy of the simulated perturbed relative

velocity data and on the machine accuracy of the computer. We

did not make a systematic study of the accuracy , of the ASTP

integration, and we held thi parameter which determines that

accuracy fixed at a value that had been deemed sufficient for

earlier work. Thus it is possible that significantly better fits

might have been obtained with more accurate simulations. There

is hardly reason to doubt, however, that our ASTP simulated data

is as accurate as it could be expected for real data.

Figure 23(a) shows the results of the least-squares fitting

for a single input anomaly five degrees from the projected

satellite path, where two different singular value cutoffs have

been used. Neither of these fits can begin to compare with those

previously obtained for anomalies directly on the projected
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satellite path. They both show a broad peak more or less

centered on the single input spike. The ratio of maximum

singular value to minimum allowed singular value is indicated by

the Greek letter tau in these plots. There is not a great deal

to choose from among these three different cutoffs. The 10-2

cutoff results show flatten out the peak more and shift it

somewhat to a lower value. The fit obtained with T - 10-3 was

judged better than either of these having a peak of 3.5 at the

central point of the distribution. It should be noted, however#

that the fits obtained with a cutoff of 10
"6
 (not shown) were

terrible. The 10-2 cutoff eliminates six of the ten singular

basis functions.

Figures 23(b) and 23(c) show results of further fitting in

the standard low-low configuration where T s 10-3 . In the one

case a single anomaly nine degrees off-line served as input, and

in the other case there were two anomalies # one on-line and the

other nine degrees off. These fits # while definitely providing

some information about the surface mass distribution # are again

inferior to results obtained in the all-on - line cases. However#

this is to be expected. Figure 23(d) shows the r^rults of

attempts to resolve a dual resonance with a single degree of

separation. Again we see that the fit obtains a picture of the

average mass distribution over dimensions larger than our surface

elements.
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In addition to the low-low configuration case of Figure

23(d), we obtained corresponding results for T 0 1073 using the

Colombo configuration analyzed before. Figure 24 shows the

perturbed relative velocity signature for this high-low Colombo

configuration.

Finally, we considered one case in which the anomaly lay

beneath the earth'j surface (on another surface at a lower

radius). This was done for the Colombo configuration previously

studied. The design matrix was obtained for a series of ten

surface elements starting on the earth's surface and continuing

downward at 100 km radial intervals. The case for which fits

were obtained had a single anomaly 200 km beneath the earth's

surface. The fitting was done for cutoff values corresponding to

T M 10-3 and 10-2 . These results are displayed in Figure 25.

As in the transverse surface array case, the procedure fails to

recover the sharp peak of the distribution. Although neither fit

is a very accurate representation of the actual distribution, the

T a 10-2 has less negative overshoot at the greater depths below

the surface.

10. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The major goal of this study has been accomplished. We have

developed software for use in SSDT sensitivity/feasibility

studies that is both simple and economical to use and which

combines these features with considerable power of analysis.

This was accomplished by obtaining numerical solutions to the

4



linearized differential equations describing the perturbed

velocity and position co-ordinates expressed in the most concise

way. This reduction of six non-linear differential equations to

four linear ones resulted in significant savings in computer

time. The numerical solutions provide an advance over the

standard Wolf equations which strictly apply only to circular

orbits in which the satellite separation is small. Through the

use of our software it is possible to consider arbitrary orbital

configurations for SSDT ranging from the low-low configurations

with optimum satellite separation to the high-low configuration

in which only one satellite responds significantly to

gravitational anomalies. The Colombo scheme, which is in a sense

a hybrid form that combines the low-low and high-low

configurations, is readily analyzed with this software as well.

By use of a least-squares fitting routine applied to data

simulated by an independent integration of the full equations of

motion we have demonstrated that one degree by one degree surface

anomalies in the earth's gravitational field can be well resolved

by the SSDT method when the anomalies lie directly beneath the

path of the satellites in both the standard low-low configuration

and in the Colombo variation. This was done for several

different anomaly distributions.

Moreover, the singular value decomposition procedure used in

the least-squares fitting provides an indication on when surface

anomalies cannot be unambiguously resolved. In the case of a

linear array of surface anomalies oriented perpendicular to the

projected satellite path we found that the degree of resolution
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possible was considerably less than for an array parallel to the

satellite path. In this case it was possible only to recover an

anomaly smeared over several adjacent surface elements. A

preliminary study of vertically (subsurface) aligned anomalies

yielded similar results with respect to resolution and

recoverability in the Colombo configuration.

Our study of signal strength as a function of satellite

height and separation indicated that a separation of around six

degrees appears to be optimum and that higher altitudes up to

300 km should still measure a sufficiently strong signal to

detect 1 mgal anomalies. The Colombo scheme was shown to offer

significant savings over the standard low-low scheme for a given

value of perigee assuming a drag compensation system is utilized.

The Colombo scheme (described in detail in the body of the

report) was found to match the standard low-low configuration in

resolving power and anomaly recovery for a single pass over the

surface of interest. An interesting comparison, that we did not

have sufficient time to carry out, would be between two passes

over the same surface area with the standard low-low scheme and

two passes with the Colombo configuration in its two extreme

modes of low-low and high-low. Such a study should be made with

a variety of rectangular anomaly distributions. In particular,

the resolving power of the two schemes should be tested when

y there is noise in the data, a factor which we have ignored in our

^_'°	 preliminary studies.

V
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We can conclude that our anomaly recovery analysis, althougn

it must be considered only a first step (since we have taken into

account only single linear arrays while ignoring complications

such as noise, and we have neglected the possible "interference"

of localised gravity anomalies with the higher-order harmonics of

the Earth gravity field), it has provided nevertheless relevant

deductions on the ability of the SSDT method, in its various

configurations• to contribute significantly to the improvement of

our understanding of the fine-grain features of the earth gravity

field.

i
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Figure 1.	 First example of perturbed relative velocity
signature ( anomaly location: 0° from projected
satellite path).
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Figure 2(a). Second example of perturbed relative velocity
signature (anomaly location: 0 0 from projected
satellite path).
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Figure 2(b). Example as in Figure 2(a), but with anomaly
location 10 0 from projected satellite path.
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Figure 2(c). Example as in Figure 2(a), but with anomaly
location 20 0 from projected satellite path.
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Figure 3(a). Third example of perturbed relative velocity
signature (anomaly location: 0 0 from projected
satellite path).
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Figure 3(b). Example as in Figure 3(a), but with anomaly 	 i
location 10 0 from projected satellite path.
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Figure 3(c). Example as in Figure 3(a), but with anomaly
location 20° from projected satellite path.
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'Altitude of satellite
pair: 175 km

'Angular separation: 80

'Anomaly: a single 1 0 x 1 0.
200n mgal surface anomaly

'Standard low-low configuration

0

T

^o.00
00	 SOD .0o

so.00	 :oo.00	 I'so.00	 200.00	 zs0.00 TIME 3W.00 	 3W.00	 400.00

(sec)

Figure 4. Fourth example of perturbed relative velocity
signature (anomaly location: 0 0 from projected
satellite path).
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Figure 5. Fifth example of perturbed relative velocity
signature (anomaly location: 0° from projected
satellite path).
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'Altitude of satellite
pair: 200 km

'Angular separation: 40

'Anomaly: a single, 1° x 1%
200n mgal surface anomaly

'Standard low-low configuration

T

a
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TIME 
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. c...^	 (sec)

Figure 6(a). Sixth example of perturbed relative velocity
signature (anomaly location: 0° from projected
satel: ite path) .
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'Altitude of satellite
pair: 200 km

'Angular separation: 40

'Anomaly: a single. 1° x 1°,
200n mgal surface anomaly

!4	 'Standard low-low configuration

cc
-$W,

N

9	 —T----h--^-;
50.00	 300.00	 190.00	 200.00	 250-W TIME 9oo.o0	 350.00	 400.00	 450.00	 500.00	 550`00

­M__ 	 (sec).

Figure 6 (b). Example as in Figure 6(a), but with anomaly
location 10 0 from projected satellite path.
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Figure 6(c). Example as in Figure 6(a), but with anomaly
location 20 0 from projected satellite path.
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Figure 6 (d). Example as in Figure 6(a), but with anomaly
location 30 0 from projected satellite path.
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Figure 6(e). Example as in Figure 6(a), but with anomaly
location 40 0 from projected satellite path.
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'Altitude of satellite
pair: 200 km

'Angular separation: 60
'Anomaly: a single, 1 0 x 10,
200n mgal surface anomaly
'Standard low-low configuration

If
M

$J_	
TIME --- --
(sec)

Figure 7(a). Seventh example of perturbed relative velocity
signature (anomaly location: 0° from projected

P	 satellite path).
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Figure 7(b). Example as in Figure 7(a), but with anomaly
Lte path.
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Figure 7(c). Example as in Figure 7(a), but with anomaly
location 20 0 from projected satellite path.
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'Altitude of satellite
pair: 200 km

'0.00	 50.00	 100.00	 150.00	 200.00	 250.00
TIME 

900.00	 350.00	 400.00	 150.00	 500.00	 S5o.00

(sec)
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'Altitude of satellite
pair: 200 km

*Angular separation: 60

'Anomaly: a single, 1 0 x 10,
200w mgal surface anomaly

'Standard low-low configuration
r

1O o
X

Fi

^O.OD

.00	 sso.00
.00	 10o.00	 150.00	 200.00

.00	 300.00	 350.00	 400.00

TIME

(sec)

Figure 7(e). Example as in Figure 7(a), but with anomaly
location 40° from projected satellite path.
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'Altitude of satellite
pair: 200 km

$	 'Angular separation: 8°

'Anomaly: a single, 1 0 x 10,
200n mgal surface anomaly

$	 'Standard low-low configuration

in

a:
w$
Z1,4"

$

8
m

'0.00	 50.00	 !00.00	 150.00	 200.00	 250.00 
TIME 

003.00	 350.00	 400.00	 450.00	 500.00	 $50.00 •

(sec)

Figure B.	 Eighth example of perturbed relative velocity
signature (anomaly location: 0 0 from projected
satellite path).
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Figure 9. Nineth example of perturbed relative velocity
(anomaly location: 0" from projected satellite
path).
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Figure 10(a). Tenth example of perturbed relative velocity
(anomaly location: 0 0 from projected satellite
path).
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Figure 10 (b). Example as in Figure 10(a), but with anomaly
location 10 0 from projected satellite path.
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'Altitude of satellite
pair: 250 km

'Angular separation: 50

'Anomaly: a single, 1° x 1°,
200r mgal surface anomaly

'Standard low-low configuration

4
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u

.00	 100.00	 150.00	 200.00	 250.00TIME 300.00 	350.00	 100.00	 150.00	 500.00	 550.00

(sec)

Figure 10(c). Example as in Figure 10(a), but with anomaly
location 20° from projected satellite path.
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TIME
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Figure 10(d). Example as in Figure 10(a), but with anomaly
location 30 0 from projected satellite path.
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Figure 10(e). Example as in Figure 10(a), but with anomaly
location 40 0 from projected satellite path.

i



9

6

CrJ FW.

8

N

N

1°

Y

iration

Page 71

T ^)

1 *1A	
'Altitude of satellite
Hair inn km

F

.0.00
	

50.00	 100.00	 150.00	 200.00	 2SO.00
1IME 

300.00	 350.00	 400.00	 A50.00	 S0o.00	 550.00
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Figure 11. Eleventh example of perturbed relative velocity
(anomaly location: 0° from projected satellite
path).
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'Altitude of satellite
pair: 300 km

'Angular separation: 50

v	 'Anomaly: a single. 1 0 x ins
200n mgal surface anomaly

'Standard low-low configuration
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Figure 12(a). Twelfth example of perturbed relative velocity
(anomaly location: 0 0 from projected satellite

path).
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v 'Altitude of satellite
pair: 300 km

'Angular separation: 50

'Anomaly: a single, 1 0 x 10,
200n mgal surface anomaly

'Standard low-low configuration
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Figure 12(b). Example as in Figure 12(a), but with anomaly
locaticn 10° from projected satellite path.
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'Altitude of satellite
pair: 300 km

'Angular separation: V

'Anomaly: a single. 1° x 1%
200w mgal surface anomaly

'Standard low-low configuration
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(sec)

Figure 12(c). Example as in Figure 12(a), but with anomaly
location 20° from projected satellite path.
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Figure 13. Thirteenth example of perturbed relative velocity
(anomaly location: 0° from projected satellite
path).
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Figure 16. Satellites'coordinates and vectors.
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Figure 17.	 f;hematic diagram of software system used to 	 1

Amulate data and to do least-squares fitting.
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Figure 18. Geometrical configuration of the Colombo scheme. 	 ;
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