13 research outputs found

    Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium

    Get PDF
    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-Îł was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens

    The Biobanque québécoise de la COVID-19 (BQC19)—A cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories

    Get PDF
    SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID–19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID–19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The “Biobanque québécoise de la COVID-19” (BQC19) is a pan–provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID–19

    Drug-eluting stents

    No full text

    Methylotroph Infections and Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by a defect in production of phagocyte-derived reactive oxygen species, which leads to recurrent infections with a characteristic group of pathogens not previously known to include methylotrophs. Methylotrophs are versatile environmental bacteria that can use single-carbon organic compounds as their sole source of energy; they rarely cause disease in immunocompetent persons. We have identified 12 infections with methylotrophs (5 reported here, 7 previously reported) in patients with CGD. Methylotrophs identified were Granulibacter bethesdensis (9 cases), Acidomonas methanolica (2 cases), and Methylobacterium lusitanum (1 case). Two patients in Europe died; the other 10, from North and Central America, recovered after prolonged courses of antimicrobial drug therapy and, for some, surgery. Methylotrophs are emerging as disease-causing organisms in patients with CGD. For all patients, sequencing of the 16S rRNA gene was required for correct diagnosis. Geographic origin of the methylotroph strain may affect clinical management and prognosis
    corecore