57 research outputs found

    Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal

    Full text link
    We have measured the neutron electric dipole moment using spin rotation in a non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +- 5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic uncertainty is statistical in nature and will reduce with improved statistics. The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days data taking with an improved setup. We state technical requirements for a systematic uncertainty at the same level.Comment: submitted to Phys. Lett.

    Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1x_{1-x}Cox_xSi

    Full text link
    Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1x_{1-x}Cox_xSi with xx=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A-phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the AA-phase but also at fields considerably smaller or higher than the fields required to stabilize the A-phase

    Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of Fe1x_{1-x}Cox_xSi

    Full text link
    We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of the helimagnetic transition in Fe1x_{1-x}Cox_xSi with xx = 0.30. In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1x_{1-x}Cox_xSi is gradual and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1x_{1-x}Cox_xSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure

    Magnetization jump in the XXZ chain with next-nearest-neighbor exchange

    Full text link
    We study the dependence of the magnetization M with magnetic field B at zero temperature in the spin-1/2 XXZ chain with nearest-neighbor (NN) J1 and next-NN J2 exchange interactions, with anisotropies Delta1 and Delta2 respectively. The region of parameters for which a jump in M(B) exists is studied using numerical diagonalization, and analytical results for two magnons on a ferromagnetic background in the thermodynamic limit. We find a line in the parameter space (J2/J1, Delta1/J1, Delta2/J2) (determined by two simple equations) at which the ground state is highly degenerate. M(B) has a jump near this line, and at or near the isotropic case with ferromagnetic J1 and antiferromagnetic J2, with |J2/J1| near 1/4. These results are relevant for some systems containing CuO chains with edge-sharing CuO4 units.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials

    Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of FeO/MnO core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the FeO and MnO magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the MnO shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the FeO cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials

    Elucidating individual magnetic contributions in bi-magnetic Fe3O4/Mn3O4 Core/Shell nanoparticles by polarized powder neutron diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials.I.V.G. acknowledges financial support from the Russian Foundation for Basic Research under Grant No 20-02-00109. A.G.R. and J.N. acknowledge financial support from the grants PID2019-106229RB-I0 funded by MCIN/AEI/10.13039/50110001103 and 2021-SGR-00651 from Generalitat de Catalunya. I.K. and A.G. acknowledge the European Union's H2020 reserach and innovation program, Grant agreement No 871072. A.G.R. acknowledges financial support from RYC2019-027449-I funded by MCIN/AEI/10.13039/501100011033. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the CEX2021–001214–S grant funded by MCIN/AEI/10.13039/501100011033. M.E. acknowledges the grants RYC2018-024396-I and PID2019-106165GB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future.” A.L.O. acknowledges financial support from the grants PID2021-122613OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and PJUPNA2020 from Universidad Pública de Navarra

    Metamagnetism in the XXZ model with next-to-nearest-neighbor coupling

    Full text link
    We investigate groundstate energies and magnetization curves in the one dimensional XXZ-model with next to nearest neighbour coupling α>0\alpha>0 and anisotropy Δ\Delta (1Δ1-1 \le \Delta \le 1) at T=0. In between the familiar ferro- and antiferromagnetic phase we find a transition region -- called metamagnetic phase -- where the magnetization curve is discontinuous at a critical field Bc(α,Δ)B_c(\alpha,\Delta).Comment: LaTeX file (text) + 5 PS files (5 figures
    corecore